
Worst-case optimal joins on modern hardware

Richard Gankema

CWI

While binary join plans have become the de-facto standard of join query pro-
cessing, recent work has shown that these plans are suboptimal for some classes
of queries. A typical example is the query T(a,b,c) := E(a,b), E(b,c),

E(a,c), which finds all triangles in an undirected graph. Because there are
typically many more paths of length two than there are triangles, this query
typically produces substantially larger intermediate results than the final re-
sults for any binary join plan, which can significantly hurt performance.

In an attempt to solve this problem, a new class of join algorithms was
developed, called the worst-case optimal join (WCOJ). WCOJs are multi-way
joins, and do not produce any intermediate results. The defining feature of a
WCOJ algorithm is that its asymptotic runtime complexity is bounded by the
output size of the query. This is achieved by not joining relation-at-a-time,
but variable-at-a-time instead. Examples of WCOJ algorithms are NPRR and
Leapfrog Triejoin (LFTJ).

Although WCOJ algorithms have been implemented in a number of systems,
they are still nascent compared to heavily optimized join algorithms such as the
binary hash join, and there are still numerous open questions with regards to
their most efficient implementations. In this research, we take LFTJ as the
running example for a WCOJ algorithm, and explore optimizations that can be
done to bring its performance closer to what’s possible on modern hardware.
These optimizations include (1) compressed execution, (2) employing hash table
probes instead of binary searches were appropriate, (3) using SIMD instructions
to speed up intersections of sorted integers and (4) efficient index creation when
none are readily available.

Our current contributions are new compression schemes that work well on
sorted data, yet offer random access directly in the compressed data, as well as
an optimized implementation of LFTJ employing vectorized hash lookups and
SIMD instructions providing speedups of over 5× over its original implementa-
tion. Note that this work is still in progress, and all results are preliminary.

1


