
Pattern Functional Dependencies for Data Cleaning

Abdulhakim Qahtan∗ Nan Tang♠ Mourad Ouzzani♠ Yang Cao♣ Michael Stonebraker♦
∗Utrecht University ♠Qatar Computing Research Institute ♣University of Edinburgh ♦MIT CSAIL

a.a.a.qahtan@uu.nl {ntang, mouzzani}@hbku.edu.qa
yang.cao@ed.ac.uk stonebraker@csail.mit.edu

Introduction: Functional dependencies (FDs) and their differ-
ent variants, e.g., conditional functional dependencies (CFDs),
have been widely used in data cleaning and other data manage-
ment tasks such as query optimization and data modeling. In
addition, patterns (or regex-based expressions) are widely used
to specify the format of a set of values in a given domain, e.g.,
a Year column should contain only four digits. Nevertheless, all
previous integrity constraints (ICs), including FDs and CFDs,
are limited to work on the entire attribute values and do not
exploit the intrinsic knowledge carried out by partial attribute
values in the form of patterns.

We introduce pattern functional dependencies (PFDs), a
new type of ICs that combines dependency- and regex-based
theories. Note that, besides using PFDs to detect data errors
that are hard to capture using existing methods, a positive
side-effect is that PFDs can also serve as meta-knowledge to
facilitate other data analytics tasks.

Error Detection with Traditional ICs: Consider two ta-
bles: D1 with the schema (name, gender) in Table 1, and D2

over the schema (zip, city) in Table 2, respectively.

name gender
r1: John Charles M
r2: John Bosco M
r3: Susan Orlean F
r4: Susan Boyle M

F

Table 1: D1: Name

zip city
s1: 90001 Los Angeles
s2: 90002 Los Angeles
s3: 90003 Los Angeles
s4: 90004 New York

Los Angeles

Table 2: D2: Zip

Erroneous cells, r4[gender] in D1 and s4[city] in D2, are an-
notated in pink. Their correct values, F and Los Angeles, are
shown and highlighted in green. Suppose the following FDs are
defined on these tables:

ϕ1 : Name ([name]→ [gender])

ϕ2 : Zip ([zip]→ [city])
FDs

where ϕ1 states that name uniquely determines gender in table
Name, and ϕ2 says that zip uniquely determines city in table
Zip. Clearly, ϕ1 cannot detect the error r4[gender] in D1, be-
cause there is no other tuple r : (Susan Boyle, F) in D1 – an FD

requires two tuples to cause a violation. Similarly, ϕ2 cannot
detect the error s4[city] in D2.

One possible, but very expensive, way to detect errors in D1

and D2 is by using many constant CFDs, as shown below:

where φ1 means that in table Name, if someone’s name is John
Charles, then his gender value should be M. The other constant
CFDs (φ2–φ8) can be interpreted similarly.

φ1 : Name ([name = John Charles]→ [gender = M])

...

φ8 : Zip ([zip = 90004]→ [city = Los Angeles])
CFDs

Key Observation: One fundamental limitation of previous
ICs (such as FDs and CFDs)is that they enforce data depen-
dencies using the entire attribute values. Consequently, they
cannot specify the fine-grained semantics found in partial at-
tribute values. A key observation is that by relaxing the limita-
tion of previous FDs of operating on entire attribute values, we
can specify a new type of dependencies that can capture par-
tial attribute values that follow some regex-like patterns. For
example, in D1, the first name is enough to determine gender,
e.g., John is a male and Susan is a female; and in D2, the first
three digits of zip, e.g., 900, are sufficient to determine the city
Los Angeles. Let us now consider a new type of pattern-based
constraints:

λ1 : Name ([name = John\ \A∗]→ [gender = M])

λ2 : Name ([name = Susan\ \A∗]→ [gender = F])

λ3 : Zip ([zip = 900\D{2}]→ [city = Los Angeles])
PFDs

where λ1/λ2 says that if someone’s first name is John/Susan,
then the gender is M/F (\A∗ matches any string; and λ3 says
that if a five-digit zip code starts by 900, then the city is Los
Angeles (\D{2} matches any two consecutive digits). Clearly,
λ2 can detect error r4[gender] in D1 and λ3 can detect error
s4[city] in D2.

Alternatively, consider two other constraints as follows:

λ4 : Name ([name = \LU\LL∗\ \A∗]→ [gender])

λ5 : Zip ([zip = \D{3} \D{2}]→ [city])
PFDs

where λ4 says that one’s first name uniquely determines one’s
gender for table Name (assuming that name is written as first
name followed by last name) (\LU matches any upper case let-
ter and \LL∗ matches any consecutive lower case letters); and
λ5 states that the first 3 digits of a 5-digit zip code determines
the city for table Zip. These two PFDs (λ4 and λ5) are defined
over a pair of tuples, e.g., two tuples match as specified by
the left hand side (LHS) of λ4 if they both satisfy the pattern
\LU\LL∗\ \A∗, and their first names are the same, which is

enforced by \LU\LL∗\ .
λ4 can detect error r4[gender] by comparing r3 and

r4: they have the same first name Susan but different
gender, which identifies a violation consisting of four cells
(r3[name], r3[gender], r4[name], r4[gender]). Similarly, λ5 can
detect error s4[city] by comparing s4 with s1, s2, or s3.

Remark. Specialized PFDs such as λ1–λ3 are more conservative,
and more general PFDs such as λ4–λ5 are less conservative,
potentially leading to false positives (e.g., a unisex name cannot
determine the gender). Also, and not surprisingly, real-world
data is not homogeneous. Taking Boston as an example, the
first three digits of a zip code in Boston could be either 201,
202, 203, or 204, not unique as in the case of Los Angeles.


