
DuckDB - the SQLite for Analytics

Mark Raasveldt
Centrum Wiskunde & Informatica

Amsterdam, The Netherlands
m.raasveldt@cwi.nl

Hannes Mühleisen
Centrum Wiskunde & Informatica

Amsterdam, The Netherlands
hannes@cwi.nl

API C/C++/SQLite
SQL Parser libpg query

Execution Engine Vectorized
Concurrency Control Snapshot MVCC
Storage Column-Store, Single-File
Optimizer Cost-Based

Table 1: DuckDB: Component Overview

Data management systems have evolved into large mono-
lithic database servers running as stand-alone processes. This
is partly a result of the need to serve requests from many
clients simultaneously and partly due to data integrity re-
quirements. While powerful, stand-alone systems require
considerable effort to set up properly and data access is con-
stricted by their client protocols. There exists a completely
separate use case for data management systems, those that
are embedded into other processes where the database sys-
tem is a linked library that runs completely within a “host”
process. The most well-known representative of this group
is SQLite, the most widely deployed SQL database engine
with more than a trillion databases in active use. SQLite
strongly focuses on transactional (OLTP) workloads, and
contains a row-major execution engine operating on a B-Tree
storage format. As a consequence, SQLite’s performance on
analytical (OLAP) workloads is very poor.

There is a clear need for embeddable analytical data man-
agement. This needs stems from two main sources: Interac-
tive data analysis and “edge” computing. Interactive data
analysis is performed using tools such as R or Python. The
basic data management operators available in these envi-
ronments through extensions (dplyr, Pandas, etc.) closely
resemble stacked relational operators, much like in SQL
queries, but lack full-query optimization and transactional
storage. Embedded analytical data management is also desir-
able for edge computing scenarios. For example, connected
power meters currently forward data to a central location
for analysis. This is problematic due to bandwidth limita-
tions especially on radio interfaces, and also raises privacy

concerns. An embeddable analytical database is very well-
equipped to support this use case, with data analyzed on
the edge node. The two use cases of interactive analysis and
edge computing appear orthogonal. But surprisingly, the
different use cases yield similar requirements.

In this talk, we present the capabilities of our new system,
DuckDB. DuckDB is a new purpose-built embeddable rela-
tional database management system created at the Database
Architectures group of the CWI. DuckDB is available as
Open-Source software under the permissive MIT license1. To
the best of our knowledge, there currently exists no purpose-
built embeddable analytical database despite the clear need
outlined above. DuckDB is no research prototype but built
to be widely used, with millions of test queries run on each
commit to ensure correct operation and completeness of the
SQL interface.

DuckDB is built from the ground up with analytical query
processing in mind. As storage, DuckDB uses a single-file
format with tables partitioned into columnar segments. Data
is loaded into memory using a traditional buffer manager,
however, the blocks that are loaded are significantly larger
than that of a traditional OLTP system to allow for efficient
random seeks of blocks. Queries are processed using a vec-
torized query processing engine similar to the one used in
Vectorwise to allow for high performance batch processing
and SIMD optimizations.

DuckDB’s optimizer performs join order optimization using
dynamic programming with a greedy fallback for complex
join graphs. It performs flattening of arbitrary subqueries
using the unnesting rules described in Neumann et al. In
addition, there are a set of rewrite rules that simplify the
expression tree, by performing e.g. common subexpression
elimination and constant folding.

DuckDB uses optimistic concurrency control. When two
transactions attempt to update the same value, the second
transaction will fail instead of locking the row and waiting
until the first transaction completes. DuckDB does, however,
provide very fine-grained concurrency control. Transactions
will only conflict if the exact same value is updated. Different
rows and different columns can be updated concurrently
without any issues.

DuckDB uses MVCC to provide snapshot isolation of in-
dividual transactions. However, unlike traditional MVCC
implementations the one used by DuckDB is optimized en-
tirely for batch appends, updates and deletions, allowing for
efficient updates and deletions to large subsets of the data.

1https://github.com/cwida/duckdb

1

https://github.com/cwida/duckdb

