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Self-explaining variational Gaussian Processes for
transparency and modelling of prior knowledge

Sarem Seitz1

Abstract: Bayesian methods have become a popular way to incorporate prior knowledge and a
notion of uncertainty into machine learning models. At the same time, the complexity of modern
machine learning makes it challenging to comprehend a model’s reasoning process, let alone express
specific prior assumptions in a rigorous manner. While primarily interested in the former issue, recent
developments in transparent machine learning could also broaden the range of prior information that
we can provide to complex Bayesian models. Inspired by the idea of self-explaining models, this paper
introduces a corresponding concept for variational Gaussian Processes. While the proposed method is
inherently transparent, the bayesian nature of the underlying Gaussian Process allows to incorporate
prior knowledge about the underlying problem. In one sentence, the goal is to let the human expert
explain how to solve a supervised learning problem in a language that both the model and the user
understand. For now, we evaluate these capabilities on simple problems.
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1 Introduction

As the field of explainable machine learning is getting more and more traction, methods
that were once incomprehensible to human users are beginning to become more transparent.
While a general solution to the challenge of humanly tangible, yet sufficiently complex
models still seems to be far off in the future, recent developments have yielded promising
results. The primary advantages of interpretable models are, as noted in [DVK17], (scientific)
understanding on the one hand and on the other hand safety, especially operational and
ethical safety.

Typically, interpretable methods aim to encode the implicit decision process of a black-box2
in a representation that humans can understand and evaluate. This begs, in particular, the
following research question: Can we use an interpretable representation to induce existing
knowledge about a complex modelling problem into a target model?. While there is no
normed definition of what a ’complex’ modelling problem actually is, we can loosely define
it as a task that, at least for now, typically needs to be handled by a black-box. Under this
1 University of Bamberg, Department of Information Systems and Applied Computer Science, An der Weberei 5,
96047 Bamberg, Germany sarem.seitz@uni-bamberg.de

2 in the context of machine learning, the term ’black-box’ is commonly used for models whose decision process
cannot be understood even by experts in the modeled domain
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definition, standard linear regression models lack the complexity characteristic as regression
coefficients can be used by humans to understand the underlying decision process. On the
other hand, we can encode existing knowledge about the modelling task in such models. This
is usually done either via Bayesian priors over the coefficients or constrained optimization.

Problem. For complexmachine learningmodels, it is usually not as straightforward to encode
existing knowledge as in the linear example. Our goal for this paper is therefore twofold.
First, we want to derive an approach that can model complex problems in a transparent
manner. Subsequently, we want to be able to exploit the transparent representation to encode
existing prior knowledge and use it in the model’s training procedure.

Let us split these goals further into three concrete requirements: Transparency - The solution
needs to provide insights into its decision process that can be understood by a sufficiently
trained domain expert. Flexibility - In order to be useful for complex problems, the proposed
approach needs to be flexible, i.e. be able to handle a broad range of functional relations
between input and target variables. Teachability - Finally, we need to be able to use an
interpretable representation of existing knowledge and align the model’s decision process
with that knowledge.

Apart from that, a practically relevant solution should also be able to handle with real-world
problem. This implies, in particular, that scalability to reasonably large datasets has to be
possible.

Contribution. To achieve the above desiderata, this paper proposes self-explaining vari-
ational GPs (SEVGPs). The self-explanatory component aims to solve the transparency
requirement. By using the right kernel functions, GPs can handle complex functional
relations as demanded under the flexibility specification. Since GPs are part of the family of
Bayesian models, they are naturally able to incorporate prior knowledge, i.e. they also fall
under the idea teachability. The primary limitation in this regard is the representations in
which we are able to express our prior knowledge.

While GP models in their original form are unable to deal with large datasets, there exist
many scalable solutions nowadays. Our approach will apply the concept of sparse variational
GPs (SVGPs) in order to achieve scalability to big data problems as well.

Related work. The results of [AJ18, YI20, Gu20] directly inspired this approach from an
explainability and transparency point of view. In fact, the approach [YI20] relates to this
work in a similar way as GPs relate to SVGPs. However, as will be seen, this paper does not
merely provide a scalable variant of the former work via SVGPs.

In addition to the transparency component, our aim is to also create a tool that can be used to
provide human expert knowledge via transparent representations. [NGP98, FKC17, Ru19,
YR20] all discuss the potentially beneficial role of expert and domain knowledge in machine
learning, yet either mention Bayesian methods only briefly or not at all. Nevertheless,
Bayesian non-parametrics have already been applied successfully in countless classical
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statistical modeling problems with an emphasis on incorporating prior knowledge - see
[Ge13] for a variety of examples.

Recent work on functional variational inference as discussed particularly in [Su19, Bu20]
could be a fruitful step towards a synthesis of meaningful prior models and modern Machine
Learning architectures.

Outline. In the next section we conduct a brief recap on transparent machine learning
with focus on varying coefficient and self-explaining methods. Thereafter, we proceed
similarly for GPs and SVGPs. The fourth section marks the main contribution of this paper
where the primary formulas of our approach are exposed and discussed. Experimental
validation of the approach is conducted in section five. Finally, we discuss limitations and
potential extensions of our methodology in the last section. Proofs and derivations, as well
as additional details can be found in the appendix.

2 Transparent Machine Learning

In regards to transparency in machine learning, terms like interpretable machine learning
or explainable artificial intelligence (XAI) have become quite widespread and popular.
However, up to this date, there is still no uniquely accepted definition for many terms in
this field. In our context, where we consider supervised learning problems, we will use the
following definitions of interpretation and explanation from [MSM18]:

Definition 1 An interpretation is the mapping of an abstract concept into a domain that the
human can make sense of. An explanation is the collection of features of the interpretable
domain, that have contributed for a given example to produce a decision.

The corresponding authors particularly name images and text as interpretable domains.
Explanations, on the other hand, could be visualizations that highlight image regions or
certain words that contributed in favour of or against a given decision.

As we will see, it makes sense to allow for explanations to also quantify the strength of
contribution per interpretable feature. For example, consider a fixed grey-scale image and
denote the corresponding vector of the 𝐷 image’s pixels, encoded in the range [0, 1], as
𝑥 ∈ [0, 1]𝐷 . By introducing a coefficient vector 𝛽 ∈ R𝐷 with the same dimensionality as 𝑥,
we can derive the usual linear model for a single example

𝑦 = 𝑥𝑇 𝛽 (1)

The outcome scalar 𝑦 ∈ R could then be mapped to a valid probability via some monotone,
increasing function 𝜎 : R ↦→ (0, 1). This obviously results in a binary classification problem.
Notice that we can equally write (1) as the sum of pixel-coefficient products, i.e.
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𝑦 =

𝐷∑︁
𝑑=1

𝑥 (𝑑) 𝛽(𝑑) (2)

With respect to the mentioned classification problem, (2) now implies the following logic
for quantifiable explanations:

Image pixels where 𝑥 (𝑑) 𝛽(𝑑) > 0 contribute towards a positive classification whereas
pixels where 𝑥 (𝑑) 𝛽(𝑑) < 0 contribute towards a negative classification3. Also pixels where
|𝑥 (𝑑) 𝛽(𝑑) | close to zero provide almost no contribution to the outcome and pixel where
|𝑥 (𝑑) 𝛽(𝑑) | is large provide large contribution. From now on, let us explicitly name the
product 𝑥 (𝑑) 𝛽(𝑑) as the contribution of the 𝑑-th feature.

Obviously, the contribution of each pixel must be able to differ for different images. Even
under a mere translation of some baseline image, the corresponding contributions must
also shift accordingly. As a result, the static coefficients as implied in (1) are unrealistic
when considering multiple, different images. Rather, the 𝛽 should vary with the given input
image, i.e.

𝑦 = 𝑥𝑇 𝛽(𝑥) (3)

Equation (3) now implies that the coefficient vector is a function of the input vector; in the
context of the above grey-scale input: 𝛽 : [0, 1]𝐷 ↦→ R𝐷 . At this point, we should reiterate
that this formulation is not restricted to image classification but can easily be extended to
other domains that permit a similar representation of its input features. In fact, models like
(3) were proposed as early as in [HT93] for classical statistical regression problems with
tabular data.

More recent work around these ’varying coefficient’ models has been done in [AJ18], who
considered them, under the umbrella term self-explaining models, for modern machine
learning problems like image or text classification. The most important novelty is the
replacement of regression splines to model 𝛽(·) with a feedforward neural network with 𝐷
output neurons.

3 Gaussian Processes

The building blocks of GPs, see [Ra03], are a prior distribution over functions, 𝑝( 𝑓 ), and a
likelihood 𝑝(𝑦 | 𝑓 ). Using Bayes’ law, we are interested in a posterior distribution 𝑝( 𝑓 |𝑦)
obtained as
3 Notice that we might have to add a constant term to this representation in order to account for cases where
𝑥(𝑑) = 0. Otherwise, the contribution of those features will always be zero. For simplicity though, we will only
consider the model as in (2).



Self-explaining variational GP posteriors 5

𝑝( 𝑓 |𝑦) = 𝑝(𝑦 | 𝑓 )𝑝( 𝑓 )
𝑝(𝑦) . (4)

The prior distribution is a Gaussian Process, fully specified by 𝑚(·) : X ↦→ R, typically
𝑚(𝑥) = 0, and covariance kernel function 𝑘 (·, ·) : X × X ↦→ R+0 :

𝑝( 𝑓 ) = GP( 𝑓 |𝑚(·), 𝑘 (·, ·)) (5)

We assume the input domain for 𝑓 to be a bounded subset of the real numbers, X ⊂ R𝐷 .
Technically, this invalidates (5) as 𝑓 then becomes an infinite-dimensional object for which a
probability density does not exist. Since we are dealing with finite-dimensional datasets only,
this techincal inaccuracy does not pose a problem in our further treatment. To exemplify
our focus on finite dimensional marginals, we will make heavy use of subscripts to match
inter-related objects.

Most importantly, we denote the 𝑁 × 𝐷 matrix of input data-points as 𝑋𝑁 and the
corresponding marginal GP output as 𝑓𝑁 = 𝑓 (𝑋𝑁 ). This allows us to discuss GPs either at
their multivariate Gaussian marginal output or as actual random functions. We will switch
between both concepts depending on the situation.

A common choice for 𝑘 (·, ·) is the ARD4-kernel

𝑘𝐴𝑅𝐷 (𝑥, 𝑥 ′) = \ · 𝑒𝑥𝑝(−0.5(𝑥 − 𝑥 ′)Σ(𝑥 − 𝑥 ′))) (6)

where Σ = 𝑑𝑖𝑎𝑔(𝑙21 , ..., 𝑙
2
𝐾
) is a diagonal matrix with entries in R+0 and \ > 0. For 𝐾 = 1,

(6) is equivalent to an SE5-kernel. We denote by 𝐾 the positive semi-definite Gram-Matrix,
obtained as 𝐾 (𝑖 𝑗) = 𝑘 (𝑥𝑖 , 𝑥 𝑗 ), 𝑥𝑖 the 𝑖-th row of training input matrix 𝑋𝑁 . As before, we
denote the kernel gram-matrix belonging to 𝑋𝑁 as 𝐾𝑁𝑁 and a potential mean vector as
𝑚𝑁 = 𝑚(𝑋𝑁 ).

Provided that 𝑝(𝑦𝑁 | 𝑓𝑁 ) =
∏𝑁
𝑖=1N(𝑦𝑖 | 𝑓𝑖 , 𝜎2), i.e. training observations 𝑦𝑁 are i.i.d.

univariate Gaussian conditioned on 𝑓 , it is possible to directly calculate a corresponding
posterior distribution for new inputs 𝑋∗ as

𝑝( 𝑓∗ |𝑦𝑁 ) = N( 𝑓∗ |Λ∗𝑁 𝑦𝑁 , 𝐾∗∗ − Λ∗𝑁 (𝐾𝑁𝑁 + 𝐼𝜎2)Λ𝑇∗𝑁 ) (7)

where Λ∗𝑁 = 𝐾∗𝑁 (𝐾𝑁𝑁 + 𝐼𝜎2)−1, 𝐾∗𝑁, (𝑖 𝑗) = 𝑘 (𝑥∗
𝑖
, 𝑥 𝑗 ), 𝐾∗∗, (𝑖 𝑗) = 𝑘 (𝑥∗

𝑖
, 𝑥∗
𝑗
); 𝐼 is the

identity matrix with according dimension.

4 Automatic Relevance Determination
5 Squared Exponential



6 Sarem Seitz

In order to make GPs feasible for large datasets, the work of [Ti09, HFL13, HdGMG15]
developed and refined Sparse Variational Gaussian Processes (SVGPs). SVGPs, introduce a
set of 𝑀 so called inducing locations 𝑍𝑀 ⊂ X and corresponding inducing variables 𝑓𝑀 .
The resulting posterior distribution, 𝑝( 𝑓 , 𝑓𝑀 |𝑦), is then approximated through a variational
distribution 𝑞( 𝑓 , 𝑓𝑀 ) = 𝑝( 𝑓 | 𝑓𝑀 )𝑞( 𝑓𝑀 ) - often 𝑞( 𝑓𝑀 ) = N( 𝑓𝑀 |𝑎, 𝑆), 𝑆 = 𝐿𝐿𝑇 - by
maximizing the evidence lower bound (ELBO):

𝐸𝐿𝐵𝑂 =

𝑁∑︁
𝑖=1
E𝑝 ( 𝑓 | 𝑓𝑀 )𝑞 ( 𝑓𝑀 ) [log 𝑝(𝑦𝑖 | 𝑓𝑖)] − 𝐾𝐿 (N (𝑎, 𝑆) | |N (𝑚𝑀 , 𝐾𝑀𝑀 )) (8)

where 𝐾𝐿 (N (·, ·) | |N (·, ·)) denotes the KL-divergence between two (multivariate) Normal
distributions. Finally, let us recall the following distributional properties of the marginal
variational posterior process 𝑞( 𝑓∗) =

∫
𝑝( 𝑓∗ | 𝑓𝑀 )𝑞( 𝑓𝑀 )𝑑𝑓𝑀 :

𝑞( 𝑓∗) = N( 𝑓∗ |Λ̃∗𝑀𝑎, 𝐾∗∗ − Λ̃∗𝑀 (𝐾𝑀𝑀 − 𝑆)Λ̃∗𝑀 ) (9)

where Λ̃∗𝑀 = 𝐾∗𝑀𝐾−1
𝑀𝑀
. Also, we will write �̃�∗ := Λ̃∗𝑀𝑎 and �̃�∗∗ := 𝐾∗∗ − Λ̃∗𝑀 (𝐾𝑀𝑀 −

𝑆)Λ̃∗𝑀 . If two input matrices, 𝑥𝑖 and 𝑥 𝑗 each consist of a single datapoint, �̃�𝑖 , �̃� 𝑗 and
�̃�𝑖 𝑗 can be viewed as the mean and kernel functions of the variational GP, evaluated at 𝑥𝑖
and 𝑥 𝑗 . We then denote the implicit GP mean and kernel functions as �̃�(·) = Λ̃·𝑀𝑎 and
�̃� (·, ·) = 𝐾· · − Λ̃·𝑀 (𝐾𝑀𝑀 − 𝑆)Λ̃𝑇·𝑀 .

This allows us to hide the underlying dependencies on 𝑎 and 𝑆 in our notation and treat the
variational GP as a separate entity from the original GP whose posterior distribution we are
trying to approximate.

4 Self-explaining variational posterior distributions

The preceding two sections easily motivate the replacement of the feedforward neural
network in self-explaining models by a GP model. For a given matrix of training data 𝑋𝑁
and target vector 𝑦𝑁 , we obtain the following likelihood model:

𝑝(𝑦𝑁 | 𝑓 1, ..., 𝑓 𝐷; 𝑋𝑁 ) = 𝑝(𝑦𝑁 |𝑋𝑁 · 𝑓 1,𝐷 (𝑋𝑁 )) (10)

where "·"means matrix multiplication for clarity (we will omit the "·" from now),

𝑓 1,𝐷 (𝑋𝑁 ) =

𝑓 1 (𝑋𝑁 )𝑇

...

𝑓 𝐷 (𝑋𝑁 )𝑇
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and we explicitly included the input matrix 𝑋𝑁 to exemplify the relation to self-explaining
models. Also, let us require independence between the individual GPs. Now, we are dealing
with a linear combination of 𝐷 independent GPs instead of a single one. Combining (10)
and the concept of SVGPs, we can introduce 𝐷 variational processes and approximate the
respective varying-coefficient GPs:

This directly implies the following ELBO:

𝐸𝐿𝐵𝑂 = E𝑞 ( 𝑓 1,𝐷 )

[
log 𝑝

(
𝑦𝑁

��𝑋𝑇𝑁 𝑓 1,𝐷𝑁 )]
−

𝐷∑︁
𝑑=1

𝐾𝐿 (N (𝑎𝑑 , 𝑆𝑑) | |N (𝑚𝑑𝑀 , 𝐾
𝑑
𝑀𝑀 )) (11)

where 𝑋𝑖 denotes the 𝑖-th row of 𝑋𝑁 . The derivation of (11) can be found in Appendix A.
Notice that we now have 𝐷 sets of inducing variables, 𝐼𝑀𝑑 . Obtaining a posterior predictive
distribution for a Gaussian likelihood is also straightforward under this model:

𝑝(𝑦∗ |𝑋∗) =
∫

𝑝(𝑦∗ |𝑋∗ 𝑓 1,𝐷∗ )𝑞( 𝑓 1,𝐷∗ )𝑑𝑓 1,𝐷∗

= N
(
𝑦∗

����� 𝐷∑︁
𝑑=1

𝑋𝑑∗ ⊙ �̃�𝑑∗ ,
𝐷∑︁
𝑑=1

𝑑𝑖𝑎𝑔

(
𝑋𝑑∗

(
𝑋𝑑∗

)𝑇
⊙ �̃�𝑑∗∗

)
⊙ 𝐼 + 𝜎2 · 𝐼

) (12)

where ⊙ denotes element-wise multiplication, 𝐼 is a unit-diagonal matrix of according
dimension and 𝜎2 is the variance hyperparameter of the Gaussian likelihood. Finally, we
can calculate a posterior distribution of the contribution of the 𝑑-th feature for a given
input vector 𝑋𝑖:

𝑋𝑑𝑖 𝑓
𝑑
𝑖 ∼ N

(
𝑋𝑑𝑖 · �̃�𝑑 (𝑋𝑖), (𝑋𝑑𝑖 )2 · �̃�𝑑 (𝑋𝑖 , 𝑋𝑖)

)
(13)

Now, let us introduce 𝐷 GPs - 𝑓 1, ..., 𝑓 𝐷 - with the following finite dimensional marginal
distributions:

𝑓 𝑑∗ ∼ N
(
𝑋𝑑∗ ⊙ �̃�𝑑∗ , 𝑋𝑑∗

(
𝑋𝑑∗

)𝑇
⊙ �̃�𝑑∗∗

)
(14)

with �̃�𝑑∗ , �̃�𝑑∗∗ the mean vector and kernel Gram-matrices per GP as defined in (9). For a
given set of inputs and the underlying mean and kernel functions 𝑚𝑑 (·), 𝑘𝑑 (·, ·) fixed, the
behavior of the 𝑓 1, .., 𝑓 𝐷 can be manipulated by adjusting 𝑎𝑑 , 𝐿𝑑 , the hyper-parameters
of the underlying inducing variables. Clearly, (14) can be interpreted as the attribution
corresponding to the respective marginal SVGP.
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By summing up the 𝑓 𝑑 , we obtain yet another GP, �̃�, with trivial marginal distribution:

�̃�∗ ∼ N
(
𝐷∑︁
𝑑=1

𝑋𝑑∗ ⊙ �̃�𝑑∗ ,
𝐷∑︁
𝑑=1

𝑋𝑑∗

(
𝑋𝑑∗

)𝑇
⊙ �̃�𝑑∗∗

)
(15)

Notice that �̃� yields a self-explaining GP whose 𝑑-th attribution can easily be queried via
the corresponding summand GP, 𝑓 𝑑∗ .

Our goal now is to use �̃�∗ as a variational posterior distribution for an arbitraryGP 𝑓 by finding
a set of parameters, namely 𝑎𝑑 , 𝐿𝑑 (and potential hyperparameters for 𝑚𝑑 (·), 𝑘𝑑 (·, ·)), for
�̃�∗ that minimize

𝐾𝐿 (𝑞�̃� ( 𝑓 ) | |𝑝( 𝑓 |𝑦)) (16)

with 𝑞�̃� (·) the GP distribution as defined in (14). Unfortunately, the usual route
for SVGP inference is not possible since 𝑞�̃� ( 𝑓 ) =

∫
𝑝�̃� ( 𝑓 | 𝑓𝑀 )𝑞�̃� ( 𝑓𝑀 )𝑑𝑓𝑀 , 𝑝( 𝑓 ) =∫

𝑝( 𝑓 | 𝑓𝑀 )𝑞( 𝑓𝑀 )𝑑𝑓𝑀 , hence 𝑝�̃� ( 𝑓 | 𝑓𝑀 ) ≠ 𝑝( 𝑓 | 𝑓𝑀 ) and therefore the conditional dis-
tributions do not cancel in the derivation of the ELBO. To solve the resulting infinite
dimensional variational problem between the two respective GPs, we apply functional
variational inference as proposed by [Su19]. The authors show, that there exists a functional
evidence lower bound (fELBO) which can be maximized in order to solve the optimization
problem in (16):

𝑓 𝐸𝐿𝐵𝑂 = E𝑞 ( 𝑓 ) [𝑝(𝑦𝑁 | 𝑓𝑁 )] − E𝑝 (𝐴)
[
𝐾𝐿 (𝑞( 𝑓(𝑁,𝐴) ) | |𝑝( 𝑓(𝑁,𝐴) ))

]
(17)

where 𝑋𝐴 is a so-called measurement set, obtained by sampling uniformly from the space of
all possible inputs, X. 𝑋(𝑁,𝐴) then denotes the union of 𝑋𝑁 and 𝑋𝐴 via row-wise stacking,

i.e. 𝑋(𝑁,𝐴) =

[
𝑋𝑁

𝑋𝐴

]
. By applying the fELBO to our prior and variational processe, we obtain

𝑓 𝐸𝐿𝐵𝑂1 =

E𝑞�̃� ( 𝑓𝑁 ) [log 𝑝(𝑦𝑁 | 𝑓𝑁 )]
−E𝑝 (𝐴)

[
𝐾𝐿 (N (𝑚�̃�, (𝑁,𝐴) , 𝐾�̃�, (𝑁,𝐴) (𝑁,𝐴) ) | |N (𝑚 (𝑁,𝐴) , 𝐾 (𝑁,𝐴) (𝑁,𝐴) ))

] (18)

where 𝑚�̃�, (𝑁,𝐴) , 𝐾�̃�, (𝑁,𝐴) (𝑁,𝐴) denote the evaluation of the mean vector and Kernel-gram
matrix from (15), evaluated at 𝑋(𝑁,𝐴) . 𝑚 (𝑁,𝐴) , 𝐾 (𝑁,𝐴) (𝑁,𝐴) denote the mean vector and
Kernel-gram matrix of the prior GP, evaluated accordingly.

In essence, this approach allows us to encode functional prior knowledge via the prior GP as
usual. By decomposing the variational posterior GP after optimizing (18) into its summand
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attribution GPs, we obtain a transparent approximation of the true posterior distribution in
the tradition of varying coefficient or self-explaining models.

Another promising use-case arises, when we place prior distributions on the attribution GPs
themselves, e.g. for arbitrary input 𝑋:

𝑓 𝑑𝑋 := 𝑋
𝑑 𝑓 𝑑 ∼ GP(𝑚𝑑𝑋 (·), 𝑘

𝑑
𝑋 (·, ·))6 (19)

If the respective mean and kernel functions can be decomposed as 𝑥𝑖 · 𝑚𝑑 (𝑥𝑖) and
𝑥𝑖𝑥 𝑗 · 𝑘𝑑 (𝑥𝑖 , 𝑥 𝑗 ), (19) is a GPX problem as discussed before. If this not the case, however,
and if we want to retain transparency of the respective posterior distribution, we can
approximate the attribution GPs by 𝑓 1, ..., 𝑓 𝑑 . As in (16) we want to minimize

𝐾𝐿

(
𝑞 𝑓 1 ,..., 𝑓𝐷

(
𝑓 1𝑋, ..., 𝑓

𝐷
𝑋

) ������𝑝 (
𝑓 1𝑋, ..., 𝑓

𝐷
𝑋

���𝑦)) (20)

By invoking (17) again and by the fact that the KL-divergence of the joint distribution
between prior and variational GPs decomposes as the sum of the KL divergences for
mutually independent GPs, we get:

𝑓 𝐸𝐿𝐵𝑂2 =

E𝑞
𝑓 1 ,..., 𝑓 𝐷 ( 𝑓 1𝑋 ,..., 𝑓𝐷𝑋 )

[
log 𝑝

(
𝑦𝑁

��� 𝑓 1𝑋, ..., 𝑓 𝐷𝑋 )]
−E𝑝 (𝐴)

[
𝐾𝐿

(
N

(
𝑚 𝑓 𝑑 , (𝑁,𝐴) , 𝐾 𝑓 𝑑 , (𝑁,𝐴)

) ������N (
𝑚 𝑓 𝑑

𝑋
, (𝑁,𝐴) , 𝐾 𝑓 𝑑

𝑋
, (𝑁,𝐴) (𝑁,𝐴))

))] (21)

As a brief example, we could choose 𝑚𝑑
𝑋
(·) << 0 to exemplify the prior belief that

the attribution of the 𝑑-th feature is negative with high probability. Obviously, potential
priors could be much more complex. In fact, it might be fruitful to consider implicit
processes as introduced in [MLHL19] as a prior and use our self-explaining posterior as an
approximation.

5 Experiments

In this section, we evaluate the proposed method on several experimental tasks. In particular,
we are interested in the explanations generated by our method, its ability to incorporate prior
assumption and its predictive performance. All experiments were conducted on regression
problems, where the likelihood could be assumed to be Gaussian.

Extended implementation details can be found in Appendix B.
6 𝑋𝑑 can be seen a linear operator on 𝑓 𝑑 that transforms all finite-dimensional marginals of 𝑓 𝑑 via 𝑋𝑑

𝑁
⊙ 𝑓 𝑑

𝑁
.
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5.1 Evaluation of explanations

In addition to point values for the varying coefficients, the SVGP components allow to also
evaluate the variance of varying coefficients. In accordance with the typical interpretation
of posterior variance in Bayesian models, this can be interpreted as a measure of coefficient
uncertainty or explanation uncertainty.

Fig. 1: Coefficient means for two input datapoints from the boston housing dataset.

Fig. 2: Coefficient var for two input datapoints from the boston housing dataset (correspond-
ing to coefficient means.)

To evaluate these measures, the coefficient means and variances of a trained SEVGP model
(via (11) ) were calculated for two datapoints from the boston housing dataset. Figures 1.
and 2. show the results. While the coefficient means are relatively stable for both examples,
the variances differ visibly. Interestingly, the coefficients of the left example show high
uncertainty for the most influential coefficient (feature CHAS). The respective outputs can
be used to check for hidden biases or erroneous reasoning in the respective model.

5.2 Evaluation of inclusion of prior knowledge

To verify the model’s capability to incorporate existing prior knowledge, a random sample
from a quadratic function with gaussian noise was created in the interval [−2, 2]. A
model that is able to handle knowledge about the underlying quadratic function should
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be able to extrapolate accordingly beyond the range of the observed data (often termed
out-of-distribution problem).

In order to validate this claim for our approach, the three models implied in (11), (18) and
(21) were compared. For (18) (= prior knowledge about 𝑔) a GP prior with second-order
polynomial kernel was used. For (21) (= prior knowledge about the feature-wise effects) a
GP prior with linear kernel was placed on 𝑓 𝑑 , which is technically equivalent to placing a
polynomial kernel on 𝑋𝑑 𝑓 𝑑 .

Fig. 3: Variational posterior predictive distributions for the approaches in (11) (left), (18)
(middle), (21) (right)

The results in Figure 3 indicate that the model is able to correctly handle the functional
prior knowledge about the underlying quadratic function. It can be see, that both models
that were trained with additional prior knowledge (middle and right) were able to correctly
extrapolate the quadratic function. Without such prior knowledge (left model), the resulting
posterior predictive distribution only fits the in-sample data but is unable to extrapolate out
of distribution.

5.3 Evaluation of predictive performance

To validate the predictive performance of the proposed method, it was evaluated over four
regression datasets (boston housing, concrete, wine red and wine white) via five-fold cross
validation. For comparison, standard SVGP was also trained and evaluated on the same
folds. Table 1 shows average MSE and MSE standard deviation over the folds. All GP
models used an ARD covariance kernel and zero-mean prior functions.

Since SEVGP uses one SVGP per coefficient, the amount of inducing points in the SVGP
was increased accordingly to account for the increased model capacity of SEVGP. See
Appendix B for more details.

It can be seen that our proposed method achieves comparable performance to SVGP. This
implies that problems where the latter perform well, allow for the SVGP to be replaced by
SEVGP in case the discussed benefits are deemed advantageous.
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SVGP SEVGP (this paper)
Boston 0.1658 ± 0.1052 0.1531 ± 0.0736
Concrete 0.0099 ± 0.0027 0.0106 ± 0.0048
Wine red 0.6212 ± 0.0410 0.6564 ± 0.0563
Wine white 0.6512 ± 0.0256 0.7224 ± 0.0595

Tab. 1:MSE for SVGP and SEVGP posterior mean; average and standard deviation over
5-fold cross validation

6 Limitations and discussion

This paper presented a method that combines GPs and recent developments in varying-
coefficient/self-explaining methods for machine learning. By taking advantage of the
Bayesian properties of GPs it is also possible to inject prior knowledge into respective
models. One area where both the transparency and the teachability aspects can be helpful
is the field of fair and unbiased machine learning. On the one hand, transparency allows
to detect biased or discriminating results on a per instance basis. On the other hand,
teachability could help prevent or eliminate potential biases by carefully encoding non-
biasing prior knowledge into the model. While this would certainly not be a silver bullet,
there might nevertheless be considerable, general potential at the intersection of explainable
and human-in-the-loop machine learning.

A clear limitation is the fact that the idea of explainability that we considered in this paper is
a statistical one, with focus on local, per-pixel explanations. In complex problems like image
classification, this might not suffice if a class is inferred from multiple symbolic relations
of different objects that are present in a given image instance. Nevertheless, statistical
approaches have recently been shown to be quite successful on such complex problems
despite possessing no inherent capabilities for logic deduction.

Future work on the proposed method should try to find a way to make the proposed method
scalable to other, potentially high dimensional, supervised learning problems. Particularly
problems with image inputs, like image classification or reinforcement learning might
greatly benefit from external prior knowledge when training data is only sparsely available.
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A Derivation of 𝐸𝐿𝐵𝑂 (11)

We write 𝑝( 𝑓 1,𝐷) = 𝑝( 𝑓 1, ..., 𝑓 𝐷) and 𝑝( 𝑓 1,𝐷
𝑀

) = 𝑝( 𝑓 1
𝑀
, ..., 𝑓 𝐷

𝑀
). Notice that 𝑝( 𝑓 1,𝐷)

does technically not exist as it involves the infinite dimensional stochastic processes where
densities don’t exist. As these objects will cancel out anyway and since such notation is
commonly seen in the GP literature, we will keep it here for simplicity. Otherwise, to be
notationally exact, we would have to work with KL divergences over probability measures
which would make the results much less convenient to derive.

𝐾𝐿

(
𝑞

(
𝑓 1,𝐷 , 𝑓 1,𝐷

𝑀

) ������𝑝 (
𝑓 1,𝐷 , 𝑓 1,𝐷

𝑀

��𝑦𝑁 ))

=

∫
log

𝑝

(
𝑓
1,𝐷
𝑁

�� 𝑓 1,𝐷
𝑀

)
𝑞

(
𝑓
1,𝐷
𝑀

)
𝑝

(
𝑓 1,𝐷 , 𝑓 1,𝐷

𝑀

��𝑦𝑁 ) 𝑝

(
𝑓 1,𝐷

�� 𝑓 1,𝐷
𝑀

)
𝑞

(
𝑓
1,𝐷
𝑀

)
𝑑𝑓 1,𝐷𝑑𝑓 1,𝐷

𝑀

=

∫
log

𝑝

(
𝑓
1,𝐷
𝑁

�� 𝑓 1,𝐷
𝑀

)
𝑞

(
𝑓
1,𝐷
𝑀

)
𝑝 (𝑦𝑁 )

𝑝

(
𝑦𝑁

�� 𝑓 1,𝐷 , 𝑓 1,𝐷
𝑀

)
𝑝

(
𝑓
1,𝐷
𝑁

�� 𝑓 1,𝐷
𝑀

)
𝑝

(
𝑓
1,𝐷
𝑀

) 𝑝 (
𝑓 1,𝐷

�� 𝑓 1,𝐷
𝑀

)
𝑞

(
𝑓
1,𝐷
𝑀

)
𝑑𝑓 1,𝐷𝑑𝑓 1,𝐷

𝑀

=

∫
log

𝑞

(
𝑓
1,𝐷
𝑀

)
𝑝 (𝑦𝑁 )

𝑝

(
𝑦𝑁

�� 𝑓 1,𝐷 , 𝑓 1,𝐷
𝑀

)
𝑝

(
𝑓
1,𝐷
𝑀

) 𝑝 (
𝑓 1,𝐷

�� 𝑓 1,𝐷
𝑀

)
𝑞

(
𝑓
1,𝐷
𝑀

)
𝑑𝑓 1,𝐷𝑑𝑓 1,𝐷

𝑀

=

∫
log

𝑞

(
𝑓
1,𝐷
𝑀

)
𝑝

(
𝑓
1,𝐷
𝑀

) 𝑝 (
𝑓 1,𝐷

�� 𝑓 1,𝐷
𝑀

)
𝑞

(
𝑓
1,𝐷
𝑀

)
𝑑𝑓 1,𝐷𝑑𝑓 1,𝐷

𝑀

−
∫
log 𝑝

(
𝑦𝑁

�� 𝑓 1,𝐷 , 𝑓 1,𝐷
𝑀

)
𝑝

(
𝑓 1,𝐷

�� 𝑓 1,𝐷
𝑀

)
𝑞

(
𝑓
1,𝐷
𝑀

)
𝑑𝑓 1,𝐷𝑑𝑓 1,𝐷

𝑀

+
∫
log 𝑝(𝑦)𝑝

(
𝑓 1,𝐷

�� 𝑓 1,𝐷
𝑀

)
𝑞

(
𝑓
1,𝐷
𝑀

)
𝑑𝑓 1,𝐷𝑑𝑓 1,𝐷

𝑀

= 𝐾𝐿

(
𝑞

(
𝑓
1,𝐷
𝑀

) ������𝑝 (
𝑓
1,𝐷
𝑀

))
−E

𝑝

(
𝑓 1,𝐷

�� 𝑓 1,𝐷
𝑀

)
𝑞

(
𝑓
1,𝐷
𝑀

) [
log 𝑝

(
𝑦𝑁

�� 𝑓 1,𝐷 , 𝑓 1,𝐷
𝑀
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+𝑝(𝑦)
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= 𝐾𝐿

(
𝑞

(
𝑓
1,𝐷
𝑀

) ������𝑝 (
𝑓
1,𝐷
𝑀

))
−E

𝑝

(
𝑓 1,𝐷

�� 𝑓 1,𝐷
𝑀

)
𝑞

(
𝑓
1,𝐷
𝑀

) [
log 𝑝

(
𝑦𝑁

�� 𝑓 1,𝐷
𝑁

)]
+𝑝(𝑦)

since 𝑦𝑁 depends on 𝑓 1,𝐷𝑀 only via 𝑓 1,𝐷 and only on the marginals given by 𝑋𝑁 .

= 𝐾𝐿

(
𝑞

(
𝑓
1,𝐷
𝑀

) ������𝑝 (
𝑓
1,𝐷
𝑀

))
−E𝑞( 𝑓 1,𝐷)

[
log 𝑝

(
𝑦𝑁

�� 𝑓 1,𝐷
𝑁

)]
+𝑝(𝑦)

by marginalizing out 𝑓 1,𝐷
𝑀
and writing 𝑓 1,𝐷 for clarity as explained before.

=

𝐷∑︁
𝑑=1

𝐾𝐿 (N (𝑎𝑑 , 𝑆𝑑) | |N (𝑚𝑑𝑀 , 𝐾
𝑑
𝑀𝑀 ))

−E𝑞 ( 𝑓 1,𝐷 )

[
log 𝑝

(
𝑦𝑖

�� 𝑓 1,𝐷
𝑖

)]
+𝑝(𝑦)

by independence of prior and variational GPs and by standard i.i.d. assumption about
observed datapoints

⇒ 𝑝(𝑦) ≥ E𝑞 ( 𝑓 1,𝐷 )

[
log 𝑝

(
𝑦𝑖

�� 𝑓 1,𝐷
𝑖

)]
−

𝐷∑︁
𝑑=1

𝐾𝐿 (N (𝑎𝑑 , 𝑆𝑑) | |N (𝑚𝑑𝑀 , 𝐾
𝑑
𝑀𝑀 ))

𝐸𝐿𝐵𝑂 = E𝑞 ( 𝑓 1,𝐷 )

[
log 𝑝

(
𝑦𝑖

�� 𝑓 1,𝐷
𝑖

)]
−

𝐷∑︁
𝑑=1

𝐾𝐿 (N (𝑎𝑑 , 𝑆𝑑) | |N (𝑚𝑑𝑀 , 𝐾
𝑑
𝑀𝑀 ))

B Implementation details

All experiments were performed on a MacBook Pro (2018), 2,2 GHz 6-Core Intel Core i7,
16 GB 2400 MHz DDR4 using Julia 1.7 (see [Be17]) and Jupyter Lab (see [Kl16]). Our
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library of choice for automatic differentiation and gradient based optimization is Zygote.jl
as described in [In18].

For gaussian likelihood with i.i.d. observations that was used for all experiments, the mean
log-likelihood can be derived in closed form (see [Ti09] for reference):

E𝑞 ( 𝑓 ) [log 𝑝(𝑦 | 𝑓 )] =
𝑁∑︁
𝑖=1
logN(𝑦𝑖 |𝑚𝑁, (𝑖𝑖) , 𝜎2) −

1
2𝜎2

𝐾𝑁𝑁, (𝑖𝑖)

The separability per data-point also allows to apply stochastic gradient descent for optimiza-
tion of the target ELBO functions. This again permits to sample small batches from the
training data per optimization step and estimate the true ELBO, which greatly reduces the
computational burden.

Finally, [Su19] propose the following sampling based fELBO:

𝑓 𝐸𝐿𝐵𝑂 =
1
𝑁

𝑁∑︁
𝑖=1

(
E𝑞 ( 𝑓 ) [𝑝(𝑦𝑖 | 𝑓𝑖)] − _ · 𝐾𝐿 (𝑞( 𝑓(𝑁,𝐴) ) | |𝑝( 𝑓(𝑁,𝐴) ))

)
(22)

where _ denotes a regularization parameter. For the experiments in section 5.2, _ was set to
1
|𝐴 | .
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