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Evolutionary Counterfactual Visual Explanation

Jacqueline Höllig1, Steffen Thoma1, Cedric Kulbach1

Abstract: The increasing success of deep learning models in recent years comes with the drawback
of increasing model complexity. Due to the complexity, model insights are hard to obtain. However,
understanding the underlying reasoning for a proposed decision becomes crucial in critical settings.
Counterfactual explanations are among the most popular methods to interpret predictions of so-called
black-box machine learning models. They provide a form of explanation intuitive to human thinking
by building ”what-if” scenarios. Despite their popularity for interpreting tabular data, they find limited
adaption in the visual domain. Current approaches to image counterfactuals rely heavily on access
to model parameters, additional training data, or surrogate models. However, access to additional
information might not always be feasible. We, therefore, propose an evolutionary-based method for
counterfactual image generation with a custom mutation operator based on data augmentation to
overcome these limitations. We show that generating image counterfactuals solemnly on an input
instance and access to the prediction function is possible and performs on par with existing methods.
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1 Introduction

Deep Learning models are at the forefront of artificial development as they allow complex
decision-making and can sometimes even discover complex patterns in data that other
algorithms or humans can hardly find. Due to their complexity, those models are “black-
boxes” with no human-understandable explanations for their predictions. With the adaption
of such algorithms to critical areas like medical diagnosis, autonomous driving, or airport
security, a human-interpretable explanation becomes crucial to gain trust in these algorithms.
However, most machine learning systems lack ways to make decisions transparent to
humans. Currently, interest in model-agnostic techniques of explainable and interpretable
machine learning is growing [LL17; RSG16; RSG18; WMR17]. Most of those approaches
determine how much each feature or which feature combination contributes to a particular
decision (e.g., [Ca18; RSG16]). Nevertheless, those methods fail to show how a different
prediction could have been achieved. According to Miller [Mi19], an essential factor for
human-understandable explanations, besides selectivity (i.e., only some causes of the
prediction are shown), sociability (i.e., interactiveness), and exclusion of probability, is
contrastiveness. Contrastive explanations should not explain why an event 𝑍 happened but
rather why an event𝑊 happened instead.
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A specific class of algorithms that can provide contrastive explanations are counterfactuals.
Counterfactuals present a perturbation to the original input that leads to a change in the
prediction of an underlying machine learning model. The roots of counterfactuals lie in
causal reasoning and offer answers to the question "What if?" and "Why?". They are already
in daily use in scientific and ordinary language. Therefore, they provide an intuitive concept
for humans to understand. Despite many efforts to apply counterfactuals to improve the
interpretability of machine learning models (e.g., [Da20; Go19; La19; LK21; MTS19;
Pa21; WMR17]), most approaches are restricted to specific input data types (e.g., [Da20;
Go19; MST20]), or the underlying model concepts (e.g., [Da20; Go19]). Most work focuses
on tabular data (e.g., [Da20; Dh18; MST20]). The small amount of work on images uses
additional information like surrogate models [Li19; LK21], access to training data [Li19;
LK21], or model parameters [Go19]. However, in the real world, this additional information
is seldom available. In particular, in industrial, medical, or privacy-sensitive applications,
the user is often not the model developer and, thus, has no access to model parameters
or the expertise to evaluate those. Furthermore, training data is often not available due to
privacy-related issues. Nevertheless, validating and explaining decisions is crucial for the
user to understand the model’s quality, trustworthiness, and decisions.

This work develops an approach to generating model-agnostic image counterfactuals in
a multi-class prediction problem. Our approach, based on NSGA-II [De02], takes on an
input image and the prediction function of some black-box classifier to be explained. To
summarise the main contributions of this work, we show that:

1. the counterfactual optimization problem is applicable on images.

2. data augmentation mutation enables a better search space coverage compared
to uniform mutation.

3. our approach achieves state of the art results on par with the approaches of
Wachter et al. [WMR17] and Van Looveren & Klaise [LK21].

2 Related Work

To obtain an in-depth understanding of black-box models and their predictions, the current
research focuses shifts from classic explainable AI tools (e.g., LIME [RSG16], GradCam
[Se16], SHAP [LL17], or Saliency Maps [ACJ19]) that visualize why a particular decision
was taken, to counterfactuals. Counterfactuals show why a different decision was taken via
alternatives, thereby providing contrastiveness.

The first steps to adapt counterfactuals from their roots in causal reasoning to a tool for
understanding black-box models were taken by Wachter et al. [WMR17]. They built on
the fundamentals of Pearl [Pe00] to develop a basic stochastic counterfactual generation
approach. They proposed the following formulation:

𝑐 = 𝑎𝑟𝑔min
𝑥′
max
_

_( 𝑓 (𝑥 ′) − 𝑦′)2 + 𝑑 (𝑥, 𝑥 ′) (1)



The first part pushes the models’ prediction 𝑓 (𝑥 ′) on the counterfactual 𝑥 ′ to a new target
class 𝑦′ ≠ 𝑦 other than the original class 𝑦. In the second part, the distance measure 𝑑
keeps the counterfactual 𝑥 ′ close to the original instance 𝑥, _ balances the contributions
of the competing terms. Extending their work towards more realistic and interpretable
counterfactuals, multiple authors provide mechanisms like feature extractors [Go19; Li19],
constraints [Dh18; Ka20; MTS19], or prototypes [LK21]. Sharma et al. [SHG19] built the
first framework for counterfactuals applicable to various black-box algorithms and data
types without the need for extensive additional information. They were able to show that
their approach works for multiple data types but was unable to produce human-interpretable
counterfactuals on MNIST. Dandl et al. [Da20] created a general framework for tabular
data by formulating a multi-objective problem for counterfactuals solved with the genetic
algorithm NSGA-II.

While counterfactuals have already been widely explored for tabular data [Da20; Dh18;
Dh19; LK21; MTS19; SHG19; WMR17], less work can be found on images. Some of
the model-agnostic approaches for table data have been applied to images (e.g.,[SHG19;
WMR17]), resulting in more adversarial samples than counterfactuals.2 Approaches to
image-specific counterfactuals focus primarily on counterfactuals for convolutional neural
networks [Go19] and learning of surrogate models [Li19; LK21].

In contrast, our approach directly operates on the input image and the classifier prediction,
eliminating the need for parameter access and training surrogate models.

3 Methodology and Model

Throughout, we consider a black-box machine learning classifier 𝑓 : 𝑋 → 𝑌 where 𝑥 ∈ 𝑋

is a set of input features (𝑥 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}) from the feature domain 𝑋 and 𝑦 ∈ 𝑌 is a
vector of probability distribution (𝑦 = {𝑦0, 𝑦1, . . . , 𝑦 |𝑦 |} where

∑ |𝑦 |
𝑖=0 = 1) over the number

of classes |𝑦 |. In this context, black-box denotes that only the model’s output 𝑦 is observable.
The model’s inner workings are unknown. The goal of counterfactual approaches is, given
an input 𝑥 and a classifier 𝑓 , to provide an explanation via counter-examples allowing a
human to understand why classifier 𝑓 chose class 𝑦 for data point 𝑥 and not a counterfactual
class 𝑦′ [WMR17].

Adapted to the image domain, it results in: Given a query image 𝑥 for which a classifier
𝑓 predicts the class 𝑦, a counterfactual image 𝑥 ′ identifies how 𝑥 could be changed in a
proximate (R1) [MST20], sparse (R2) [MST20] and plausible way (R3) [La19] so that the
classifier maximizes the change in the predicted class (R4). Proximity refers to the distance
between the original instance 𝑥 and the counterfactual instance 𝑥 ′, calculated as a distance.

2 Adversarial samples are closely related to counterfactuals. However, in contrast to counterfactuals that aim for
small perceptible changes to provide useful explanations, adversarial samples aim to make the changes as small
and imperceptible as possible to detect flaws in the model [PBK20].



Sparsity is the number of feature changes between 𝑥 and 𝑥 ′. A plausible adaption indicates
that the resulting 𝑥 ′ is in distribution with the data.

3.1 Objectives

Following the definition of a counterfactual and the resulting requirements (R1-R4), the
optimization problem minimizes the distance (R1) 𝑑 (𝑥, 𝑥 ′) between the original data point 𝑥
and the newly generated counterfactual data point 𝑥 ′ to obtain a counterfactual that is close
to the original (𝑂1). Furthermore, to ensure sparse changes (R2) the optimization problem
uses the 𝐿0-norm to minimize the number of pixels subjected to change (𝑂2), referred to as
sparsity. The third optimization objective is the output distance (R4) which maximizes the
classification probability of the counterfactual into a target class 𝑡. Equation (2) shows the
optimization problem to be minimized.

min 𝑂 (𝑥) := (𝑂1 (𝑥, 𝑥 ′), 𝑂2 (𝑥, 𝑥 ′), 𝑂3 (𝑥 ′)) (2)
𝑠.𝑡. 𝑓 (𝑥) ≠ 𝑓 (𝑥 ′)

𝑂1 (𝑥, 𝑥 ′) = 𝑑 (𝑥, 𝑥 ′)

𝑂2 (𝑥, 𝑥 ′) =
𝑁∑︁
𝑛=1

1 |𝑥𝑛−𝑥′𝑛 |

𝑂3 (𝑥 ′) = 1 − 𝑓 (𝑥 ′)𝑡

As distance measure 𝑑, most approaches to counterfactuals adapt the 𝑙1- or 𝑙2-norm [Dh18;
WMR17]. However, on images, traditional distance functions do not sufficiently account for
image similarity as it disregards the spatial relationships of images [ZB09]. Therefore we
compare the mean absolute error (using 𝑙1-norm) and the root mean squared error (using
𝑙2-norm) with different image-based similarity indices see Sect. 4.1 and appendix A3. R3 is
addressed during the algorithm design in Sect. 3.2.

3.2 Algorithm

Our algorithm combines a modified version of NSGA-II with Island Populations and an
adaption of the auto-tuning approach of Castelli et al. [Ca16]. Deb et al. [De02] developed
NSGA-II already in 2002. However, it is still a heavily used algorithm for Multi-Objective
Optimization today, as other algorithms like indicator-based methods (e.g., SMS-EMA
[EBN05], IBEA [ZK04]) rely on the additional computation of the indicator, and the results

3 https://github.com/JHoelli/Evolutionary_Counterfactual_Visual_Explanations/blob/master/
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of decomposition-based methods (e.g., MOEA/D [ZL07], NSGA-III [DJ13]) highly depend
on the shape of the Pareto front [Is17].4

As Equation 2 indicates, the only mandatory inputs for the algorithm are a black-box classifier
𝑓 and an input instance 𝑥. Our algorithm generates an island 𝐼𝑖 with a sub-population 𝑝𝑖 for
each class 𝑡 ∈ 𝑌\{ 𝑓 (𝑥)} that a classifier 𝑓 can classify. For each island 𝐼𝑖 the algorithm
stated in Algorithm 1 runs in parallel, allowing the creation of counterfactuals in multiple
boundry directions at once. In every generation 𝑔 each island 𝐼𝑖 generates new candidates
_𝑖 by selecting, crossing, and mutating high-performing individuals from the population 𝑝𝑖 .

Algorithm 1 Algorithm on island 𝐼𝑖
1: Input: Population Size 𝑃, Generation 𝐺, Original Image 𝑥,
2: Output: Non-Dominated Set 𝑝𝑖
3: 𝑝𝑖 ← initializePopulation(x)
4: 𝑐𝑥𝑝𝑏𝑖 ← generateRandomNumber(𝑙𝑒𝑛(𝑝𝑖))
5: 𝑚𝑢𝑡𝑝𝑏𝑖 ← generateRandomNumber(𝑙𝑒𝑛(𝑝𝑖) )
6: 𝐺 ← maximal number of generations
7: evaluate(𝑝𝑖)
8: 𝑝𝑖 ← selectNSGA(𝑝𝑖)
9: for 𝑔 ∈ {0, 1, . . . , 𝐺} ∨ hypervolume(𝑝𝑖) > \ do
10: _𝑖 ← selTournament(𝑝𝑖)
11: for 𝑗 in 1,. . . ,( |_𝑖 | − 1)) do
12: 𝑐𝑥 ← 𝑐𝑥𝑝𝑏𝑖 [ 𝑗−1]+𝑐𝑥𝑝𝑏𝑖 [ 𝑗 ]

2
13: if 𝑟𝑎𝑛𝑑𝑜𝑚() < 𝑐𝑥 then
14: _𝑖 [ 𝑗 − 1],_𝑖 [ 𝑗] ← crossover(_𝑖 [ 𝑗 − 1],_𝑖 [ 𝑗])
15: 𝑐𝑥𝑝𝑏𝑖 [ 𝑗 − 1], 𝑐𝑥𝑝𝑏𝑖 [ 𝑗] ← adapt_cxpb(_𝑖 [ 𝑗 − 1], _𝑖 [ 𝑗])
16: end if
17: end for
18: for 𝑗 in 0,. . . ,( |_𝑖 | − 1) do
19: if 𝑟𝑎𝑛𝑑𝑜𝑚() < 𝑚𝑢𝑡𝑝𝑏𝑖 [ 𝑗] then
20: _𝑖 [ 𝑗] ← mutate(_𝑖 [ 𝑗])
21: 𝑚𝑢𝑡𝑝𝑏𝑖 [ 𝑗] ← adapt_mutpb(_𝑖 [ 𝑗])
22: end if
23: end for
24: evaluate(_𝑖 + 𝑝𝑖)
25: 𝑝𝑖 ← selectNSGA(_𝑖 + 𝑝𝑖)
26: end for

The initial 𝑛 individuals of an island 𝐼𝑖 are randomly initialized with the length of the flattened
input image |𝑥 | along with an individual crossover rate 𝑐𝑥𝑝𝑏𝑖 and mutation rate𝑚𝑢𝑡𝑝𝑏𝑖 . The
generated individuals are evaluated on each objective stated in Equation (2). After evaluating
the individual’s fitness, non-dominated sorting is applied, and the crowding distance is
calculated according to NSGA-II [De02]. The assigned ranks are used as the primary
criterion in the tournament selection. Thereby, two individuals are compared according

4 For full reasoning we refer to the supplementary material A3.



to their rank. If they have the same rank, the crowding distance is used as a secondary
criterion to retain the individual lying in the less crowded region to maintain the population’s
diversity. The selected individuals _𝑖 are crossed by performing a uniform crossover [SD91].
The unified crossover modifies two individuals _𝑖 [ 𝑗] ∈ _𝑖 and _𝑖 [ 𝑗 − 1] ∈ _𝑖 in place by
swapping attributes according to the averaged crossover probability 𝑐𝑥 of the individual.
Based on the fitness of the resulting offsprings _𝑖 [ 𝑗 − 1] and _𝑖 [ 𝑗], a new crossover
probability 𝑐𝑥𝑝𝑏[ 𝑗 − 1] and 𝑐𝑥𝑝𝑏[ 𝑗]is assigned to the corresponding offspring. The
selected individuals _𝑖 [ 𝑗] are mutated with a mutation probability 𝑚𝑢𝑡𝑝𝑏𝑖 [ 𝑗] by a random
change of attribute. Based on the performance 𝑚𝑢𝑡𝑝𝑏𝑖 [ 𝑗] is adapted. The algorithm stops
if it meets the desired number of generations or exceeds a hypervolume [FPL06; ZT99]
threshold of \ on all islands (i.e., on all islands, the generated solutions dominate a portion
of \ of the objective space). The stopping criterion is applied to all islands independently as
the goal is to achieve a high-quality, non-dominated set for each of them.

3.3 Custom Operators

Some of the operators used by default in evolutionary programming are unsuitable for the
stated problem, as they do not account for spatial dependencies in images or enable images
to be out of distribution. In this section, we depict the adapted operators of NSGA-II.

Initialization By default, NSGA-II initializes the parent population 𝑝𝑖 randomly [De02].
However, initializing images with traditional stochastic techniques like Random
Number Generators leads to a vast search space (number candidate solutions for an
image: (𝑤𝑖𝑑𝑡ℎ · ℎ𝑒𝑖𝑔ℎ𝑡 · 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠)! · 255!), which slows down convergence and the
probability of finding a suitable solution.
To warmstart the algorithm by introducing relevant information and enable plausible
results (R3), we lean on the concepts of superpixels. The original image 𝑥 of size
𝐻 ×𝑊 × 𝐶, where 𝐻 is the height,𝑊 the width, and 𝐶 the channels, is divided into
𝑙 patches of size 𝐻

𝑙
× 𝑊

𝑙
× 𝐶 by slicing. Therefore an image 𝑥 contains 𝑁 patches

𝑥 = [𝑥1, 𝑥2, ..., 𝑥𝑁 ], where a patch 𝑥𝑖 is of size 𝐻
𝑙
× 𝑊

𝑙
× 𝐶. Each individual in a

population is generated by random shuffling the patch positions 𝑖.

Mutation Traditionally, individuals are mutated to produce new offsprings that are different
from their parents, thereby encouraging diversity. Using the crossover operator alone
leads to decreasing diversity and often results in local optima, as only the good parts
of the parents survive in each generation (premature convergence).[De99]
The proposed mutation operator aims to prevent premature convergence and include
new relevant information in the population by applying data augmentation [SK19].
The idea behind using data augmentation is to make sure that the changes are still
plausible (𝑅3) by manipulating the image with basic augmentation techniques. Only
basic techniques are used, as we do not use additional data or model parameters. The



data augmentation pipeline consists of functions for Random Flip (horizontally or
vertically), Random Rotation (by factor 0.2, resulting in a counterclockwise rotation
by 1.25 ), Random Contrast (by factors between 0.1 and 1.3, resulting in each pixel
being adjusted by 𝑓 𝑎𝑐𝑡𝑜𝑟 × (𝑥 −𝑚𝑒𝑎𝑛 𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 𝑜 𝑓 𝑐ℎ𝑎𝑛𝑛𝑒𝑙) ), and Zoom (with
height factors between -0.7 and -0.2, resulting in a zoom-in between [20%, 70%]).

Parameter Optimization According to Hassanat et al. [Ha19], parameters of evolutionary
algorithms, especially the mutation and crossover rates, impact the obtainable results
and convergence speed. Tuning these parameters beforehand can result in several
preliminary experiments resulting in good values before the run. However, different
values of parameters might be optimal at different stages of the evolutionary process.
Mutation can be good in the initial generations to quickly explore the search space,
while crossover is more useful once the search process is close to the optimal
solution. The proposed algorithm implements a self-adaptive parameter control
on the individual level, according to Castelli et al. [Ca16]. Each individual 𝑝𝑖 [ 𝑗]
in a population has its own crossover probability 𝑐𝑥𝑝𝑏𝑖 [ 𝑗] and its own mutation
probability 𝑚𝑢𝑡𝑝𝑏𝑖 [ 𝑗]. Both are initialized with random values between 0 and 1.
During crossover, two selected individuals, _𝑖 [ 𝑗] and _𝑖 [𝑘], generate an offspring
with the probability 𝑐𝑥𝑝𝑏 = 1

2 (𝑐𝑥𝑝𝑏𝑖 (_𝑖 [ 𝑗]) + 𝑐𝑥𝑝𝑏𝑖 (_𝑖 [𝑘])), where the resulting
offspring has the crossover probability 𝑐𝑥𝑝𝑏(_𝑖 [ 𝑗]) = 𝑐𝑥𝑝𝑏 + 𝑟 . 𝑟 is a small positive
number if the fitness of the generated offspring improved due to crossover and a
small negative number in any other case. During mutation, an individual mutates
with its mutation rate 𝑚𝑢𝑡𝑖 [ 𝑗]. The resulting individual has a mutation rate of
𝑚𝑢𝑡𝑝𝑏(_𝑖 [ 𝑗]) = 𝑚𝑢𝑡𝑝𝑏 + 𝑟, where 𝑟 is a small positive number if the fitness of the
generated offspring improves due to mutation and a small negative number in any
other case.

4 Evaluation

In this section, we evaluate the performance of our counterfactual approach on the two
broadly research image datasets MNIST [LCB10] and Fashion MNIST [HRV17], to answer
the following research questions that aim to contribute to this work:

Q1 How does the proposed image similarity measure influence the performance
of our algorithm?→ Sect. 4.1

Q2 How does the proposed mutation mechanism influence the performance of
our algorithm?→ Sect. 4.2

Q3 How does the image counterfactual approach perform compared to other
state-of-the-art methods for image counterfactuals?→ Sect. 4.3



Both datasets include 60.000 training images and 10.000 test images divided into 10 classes.
An image is of size 28× 28 pixels. Both datasets were split into an 80/20 train/test split. The
train set was only used for training the classification model, while the following experiments
were run on the test set.

The classification model consists of two convolutional layers for both datasets, followed by
max-pooling. The output layer is flattened and fed into a two-layer feed-forward network
with ReLu activation and a softmax output layer. This model is trained for 30 epochs with a
batch size of 100 on the training set. For MNIST, the model achieves a test set accuracy of
0.9921; for Fashion MNIST, an accuracy of 0.831. We run all experiments on an Intel(R)
Xeon(R) Platinum 8180M CPU with 2.50GHz with 1.5 TB of RAM. The code to our
evaluation is made publicly available on github5.

4.1 Q1: Distance Function

A counterfactual optimization problem usually includes minimizing the distance to the
original data. However, on images, traditional distance measures like the root mean squared
error or mean absolute error do not sufficiently account for image similarity as they
disregard images’ spatial relationships [ZB09]. To validate our choice of distance function,
we compare the mean absolute error (𝑀𝐸) to other popular image similarity indexes:
Information Based Statistic Similarity Measure (𝐼𝑆𝑆𝑀) [Al19], Feature-Based similarity
Index (𝐹𝑆𝐼𝑀) [ZGD11], Root Mean Squared Error (𝑅𝑀𝑆𝐸), and the Structural Similarity
Index (𝑆𝑆𝐼𝑀) [SAU19]. All functions were inversed and mapped to the range [0, 1].
Appendix B3 defines the distance measures and transformations.

For each dataset, we randomly sample 15 instances. We run the algorithm without a target
direction 𝑡 on every distance 𝑑 ∈ {𝑆𝑆𝐼𝑀, 𝐼𝑆𝑆𝑀, 𝐹𝑆𝐼𝑀, 𝑅𝑀𝑆𝐸, 𝑀𝐸} for the selected
images and set the number of epochs to 100, as we do not want the stopping criteria to
interfere. The population size was set to 1000. The evaluation criterion is the hypervolume
(i.e. the search space coverage). The goal is to cover a high fraction of the search space in a
small number of generations.

Fig. 1 shows the development of the hypervolume averaged over all samples from both
datasets. Overall, ME has the highest search space coverage, indicating the highest likelihood
of achieving good results. After 100 epochs, the hypervolume of the algorithm optimizing
ME as distance reaches an average of 0.7023, the highest result for any tested distance.
Further, the superiority of 𝑀𝐸 over 𝑅𝑀𝑆𝐸 confirms Wachter et al. [WMR17]. The sparsity
introducing property of the 𝑙1-norm used in ME as distance measure is desirable for
human-understandable counterfactuals, as only a small number of variables are changed.
For image examples, we refer the reader to section C in the appendix3.

5 https://github.com/JHoelli/Evolutionary_Counterfactual_Visual_Explanations
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Fig. 1: Q1: Averaged hypervolume and standard
deviation of experiment 1.

Fig. 2: Q2: Distribution of the hypervolume after
100 generations.

4.2 Q2: Mutation Operator

This section evaluates the mutation operator described in Sect. 3.3. As a baseline, we use an
implementation of random mutation, replacing a pixel with a random number 𝑟 ∈ [0, 255]
with a probability of 0.1.

For both mutation types, the algorithm runs on 15 randomly chosen images per dataset.
With ME as distance, we run the algorithm for 100 epochs with a population size of 1000
and no target direction. Again we evaluate the hypervolume to evaluate which mutation
leads better through the search space.

Fig. 2 shows the distribution of the hypervolume for our mutation and the random mutation.
On average, our mutation leads to better search space coverage. It covers an, on average,
over 10 % larger fraction of the search space than the random mutation baseline while
having minor performance fluctuations. For image examples, we refer the reader to section
C in the appendix3.

4.3 Q3: Benchmarking

This section compares our approach to two widely used counterfactual benchmarks: the
approach of Wachter et al. [WMR17] and Van Looveren & Klaise [LK21]. The approach
of Wachter et al.[WMR17] is a simple stochastic optimization between the distance of the
original image and the counterfactual image. Like our approach only the input image and
the classification are necessary as inputs. A more sophisticated approach regarding the
data distribution was developed by Van Looveren & Klaise [LK21] by training a surrogate
model for counterfactual search. Therefore, Van Looveren & Klaise [LK21] approach is a
slightly harder benchmark for our algorithm to meet as we do not use additional information
regarding the data distribution.



For both datasets, a representative of each class is chosen, resulting in 10 images per dataset.
Our algorithm runs on each image in every possible target direction 𝑡 ∉ { 𝑓 (𝑥)} for 500
epochs with a population size of 1000. We ran the benchmarks in two settings:

1. without a specific target class 𝑡, to get the overall best counterfactual image.

2. with every possible target direction 𝑡 ∉ { 𝑓 (𝑥)} to calculate the benchmark
metrics.

The metrics were adapted and fitted to this context from [Pa21].

• Distances: We measure the distance between a counterfactual 𝑥 ′ and the original
image 𝑥 with the 𝑙0- and the 𝑙1- norm. The 𝑙0 norm calculates the number of pixels
changed between original and counterfactual instance and is identical to the sparsity
from the optimization problem (R2). The 𝑙1 norm calculates the average change and
is consistent with ME (R1).

• Redundancy: Redundancy measures the unnecessary proposed feature changes in a
counterfactual, by successively flipping one value of 𝑥 ′ after another back to 𝑥 with
the goal of flipping the label back from 𝑓 (𝑥 ′) to the original predicted outcome 𝑓 (𝑥).
If the predicted outcome does not change, we increase the redundancy counter.

• yNN: yNN (Equation (3)) evaluates the data support (R3) of a counterfactual based
on instances from the trainings set. Ideally, a counterfactual should be close to a
factual image from the same target class 𝑡. yNN is calculated by measuring how
different neighborhood points around the counterfactual 𝑥 ′ are classified. knn are the
k-nearest neighbors of the original image 𝑥. We use a value of 𝑘 = 5.

Fig. 3: Evaluation of the 𝑙1- and 𝑙2-distance
distribution of counterfactual explanations.

𝑦𝑁𝑁 = 1 − 1
𝑘

∑︁
𝑗∈𝑘𝑁𝑁 (𝑥′)

1 𝑓 (𝑥′)= 𝑓 (𝑥 𝑗 ) (3)

Method yNN Redundancy

M
N
IS
T Our Approach 0.61 ± 0.24 80.17 ± 41.64

Wachter et al. 0.48 ± 0.26 150.59 ± 54.17
Van Looveren & Klaise 0.49 ± 0.25 158.06 ± 43.72

Fa
sh
io
n Our Approach 0.67 ± 0.24 202.3 ± 124.31

Wachter et al. 0.49 ± 0.26 161.37 ± 74.89
Van Looveren & Klaise 0.5 ± 0.25 168.80 ± 79.66

Tab. 1: Results on metrics yNN (higher is better)
and redundancy (lower is better).



Fig. 3 shows that our approach achieved the on-average lowest distances, resulting in
counterfactuals that have on average fewer changes (𝑙1) and smaller changes (𝑙2) than the
other two approaches.

Tab. 1 adds the obtained results for the metrics redundancy and yNN. For both datasets,
our approach achieves the highest yNN indicating that the resulting counterfactuals have
higher support from the training data than the counterfactuals obtained by the benchmark
approaches. On redundancy, no conclusion can be made. On MNIST our approach has a
smaller redundancy (i.e. less unnecessary changes) than the benchmark approaches, while
on Fashion MNIST the opposite is the case.

(a) MNIST

(b) Fashion MNIST

Fig. 4: Visualization of the best found counterfactual of every evaluated approach on MNIST and
Fashion MNIST.



For both datasets, our approach found the closest counterfactual with the most support from
the training dataset, while using no other input information than the classifiers prediction
function and the input image. The redundancy is in this case negligible, as sometimes
more pixels need to change to obtain higher support from training data than for changing a
classifier’s decision. Fig. 4 visualizes the best found counterfactual for the input images
with all the evaluated approaches.

5 Conclusion

In this work, we introduced an approach to generate image counterfactuals in a multiclass
classification problem by perturbing the original image with evolutionary computation and
data augmentation. Based on NSGA-II, we presented a promising direction in building
counterfactuals close to the original input with high data support, without the need to
access additional information or model parameters. Further, we show that the counterfactual
optimization problem is applicable in high-dimensional feature spaces such as images and
that the mutation and augmentation of the image data enables a better search space coverage.
Finally, our approach achieves state-of-the-art results on par with the approaches of Wachter
et al. [WMR17] and Van Loveren & Klaise [LK21]. Based on the provided approach and the
general applicability, we aim to optimize the runtime of the underlying algorithm further,
investigate the mutation step and apply our method to real-world applications.
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