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Multi-Perspective Anomaly Detection on Bipartite
Multi-Layer Social Interaction Networks

Asep Maulana1,2, Martin Atzmueller3,4

Abstract: Anomaly detection is a prominent research direction in complex network analysis. In
this paper, we target a special type of complex networks, i. e. bipartite multi-layer networks. Here,
we exploit the properties of such complex networks, i. e. the partitioning of the set of nodes into
two groups, and its multi-layer characteristics. Our proposed approach includes many-objective
optimization, correlation analysis and clustering – based on Eigenvector centrality – incorporated into
a novel framework for identifying candidates for anomalous nodes from multiple perspectives – in a
human-centered interpretable way. We exemplify the application of the proposed approach in a case
study using a real-world dataset on socio-spatial interaction data.
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1 Introduction

Complex networks lend themselves to the modeling of complex relationships, with many
applications in science and industry. In the world of today, there is a wide range of possible
application areas. Often, e. g. when considering different groups of entities like different
types of actors in a social network, or different types of machines in a technical network,
then the resulting network – considering its sets of nodes – can be partitioned into distinct
groups. In the case of partitioning into two groups, we can then form a bipartite network.
Likewise, often several relationships between the nodes can be modeled and analyzed,
motivating the joint application of bipartite multi-layer network analysis [Ko20].

In this paper, we tackle such a setting in the context of anomaly detection, for identifying
candidates of anomalous nodes which indicate deviating, interesting or exceptional sets of
nodes, which we consider as anomalous nodes, i. e. anomalies in the network, concerning
their structural properties. Specifically, our proposed approach combines three methods
for anomaly detection providing separate perspectives for identifying such anomalies in a
human-centered way. At their core, these are based on the notion of centrality, specifically
Eigenvector centrality for anomaly detection, forming a combined interpretable approach
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including many-objective optimization, as well as correlation and cluster analysis. These
methods are combined into a methodological framework, for providing the different
perspectives and to enable assessment by also analyzing potential commonalities and
differences pointed to by the incorporated methods, respectively.

We build on our previous work [MA20; MA21] for (1) anomaly detection using multi-
objective optimization, as well as (2) a complementing approach for applying Eigenvector
centrality for anomaly detection in a human-centered approach. In particular, in this paper
we integrate this into a novel framework for recognizing and finding anomalous behavior in
a complex network represented as a bipartite multi-layer network, e. g. relating to different
relationships or edge types connecting the respective nodes of the network.

In short, our presented approach starts by making projections of the bipartite network.
Then, from those projections and each layer, we estimate the centrality of all its contained
nodes. Next, we apply many objective optimization to find the Pareto Front, as a basis for
finding a set of anomalous nodes with minimal centrality. In addition, we apply correlation
analysis on the centrality properties, and can further categorize nodes using clustering into
positively correlated, negatively correlated (i. e. very different) or non-correlated nodes, as
complementing perspectives in assessing anomalous nodes in an interpretable way.

In more detail, our proposed approach consists of the following steps, which we summarize
in the following:

1. Given the network represented as a bipartite multi-layer graph, we perform many-
objective optimization based on minimizing eigenvector centrality on bipartite
projections of the multi-layer network. With the minimization, we aim at obtaining
the set of the least important nodes according to eigenvector centrality, as candidates
for anomalous nodes. This provides us with our first perspective for identifying
anomalies, given by the Pareto-Front of the least important nodes according to their
(minimized) eigenvector centrality.

2. Using the vector of centrality values for a node in each layer, we perform correlation
analysis with respect to all other nodes, resulting in a correlation matrix and according
heatmap perspective, respectively, to visually inspect anomalies.

3. Finally, we can apply clustering on the correlation matrix for obtaining clusters of
nodes, as another perspective for detecting (sets of) anomalous nodes.

Overall, this enables the identification of anomaly candidates from multiple perspectives;
this then facilitates a human-centered process for analysis and assessment with a human-in-
the-loop. In particular, by making use of interpretable representations and visualizations, e. g.
given by subnetwork visualizations of anomaly candidates as well as heatmap visualizations
of clusters at the level of node vectors as well as cmomprehensive cluster diagrams. Then,
this thus further provides for a transparent process and comprehensible approach.



It is important to note, that our approach tackles the novel problem of anomaly detection
on bipartite multi-layer networks. There exist methods for anomaly detection in bipartite
networks [Li21; Su05a], and multi-layer networks [MA20; MA21], however, to the best
of the authors’ knowledge, there is no approach tackling the combined setting of anomaly
detection on bipartite multi-layer networks. Compared to our previous work in [MA20;
MA21], we specifically extend on the integration of the methods on bipartite multi-layer
networks, and present a framework which integrates different methods for anomaly detection,
while providing distinctive and complementing perspectives for analysis in a human-centered
approach. This also facilitiates interpretability and explainability of the whole approach and
its respective results in anomaly detection.

Our contributions are summarized as follows:

1. We present a novel framework incorporating many-objective optimization and
centrality-based analysis for identifying a set of anomalous nodes on bipartite
multi-layers networks, using complementing distinctive perspectives.

2. We exemplify our proposed approach using a case study. Our context is given by a
real-world dataset of socio-spatial interactions [At19b]. Applying our approach on
the dataset, we illustrate the key steps providing simple to interpret perspectives on
the respective network structures; altogether, this demonstrates the effectiveness of
our approach in this real-world dataset.

The rest of the paper is organized as follows: Section 2 discusses related work. After that,
Section 3 describes our approach in detail. Next, Section 4 presents and discusses our results.
Finally, Section 5 concludes with a summary and outlines several interesting directions for
future research.

2 Related Work and Background

In the following, we briefly introduce basic notation and background on the foundational
concepts of bipartite and multi-layer networks, represented as graphs. After that, we
summarize related work on anomaly detection, also considering methods for bipartite and
multi-layer networks.

2.1 Bipartite and Multi-Layer Complex Networks

Formally, a bipartite Graph 𝐺 is given by a triple 𝐺 = (𝑈,𝑉, 𝐸) with 𝑈, 𝑉 being sets of
vertices, where𝑈 ∩𝑉 = ∅. Furthermore, for the set of edges 𝐸 it holds that for every edge
𝑒 ∈ 𝐸 : 𝑒 = (𝑢, 𝑣) with 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉 or vice versa 𝑢 ∈ 𝑉, 𝑣 ∈ 𝑈.



For multi-layer (or multiplex) networks, we distinguish a set of layers – modeling sets
of edges corresponding to relations, denoted by 𝐸𝑙 , 𝑙 ∈ {1...𝑚}, where 𝑚 indicates
the number of layers. A multiplex network 𝐺𝑀 then can be represented formally as
𝐺𝑀 = (𝐺1, 𝐺2, . . . , 𝐺𝑙 , . . . , 𝐺𝑚), where 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖), 𝑉𝑖 ⊆ 𝑉 . Figure 1 shows an
illustration of a multi-layer network. Here, each network 𝐺𝑙 is represented by the adjacency
matrix 𝐴𝑙 with the elements 𝑎𝑙𝑖 𝑗 = 𝑊 𝑙

𝑖 𝑗
> 0, where 𝑎𝑙

𝑖 𝑗
= 𝑊 𝑙

𝑖 𝑗
> 0, if there is a positive

weight of the link between those nodes 𝑣𝑖𝑙 and 𝑣 𝑗𝑙 , 𝑣𝑖𝑙 , 𝑣 𝑗𝑙 ∈ 𝐸𝑙 in layer 𝑙, and 𝑎𝑙𝑖 𝑗 = 0
otherwise. To simplify the formalization of weighted multiplex networks, we will consider
only taking a positive integer value or zero with respect to the link between any pair of such
nodes 𝑣𝑖𝑙 and 𝑣 𝑗𝑙 in layer 𝑙.

Fig. 1: Illustration of a multi-layer network consisting of ten nodes, with two types of different links
(see left part of the figure), as indicated by the respective different colors of the edges.

2.2 Anomaly Detection in Complex Networks

Detecting anomalies in (complex) networks data is a prominent research direction, with many
practical applications. A classical definition of an anomaly [Ha80] states it as “an outlier is
an observation that differs so much from other observations as to arouse suspicion that it
was generated by a different mechanism” [Ha80]. Furthermore, for anomalies in complex
networks, the general graph anomaly detection problem can be defined as follows: “Given a
[. . . ] graph database, find the graph objects [. . . ] that are rare and that differ significantly
from the majority of the reference objects in the graph” [ATK15]. However, as we have
already discussed in [MA20; MA21; ME17] in real-world networks often more complex
phenomena are modeled using richer representations. For example, if there are multiple
relationships between nodes, and/or multiple types of nodes, then these instantiations are
difficult to capture only using simple networks/graphs.



Beyond simple graphs and multi-layer networks, we extend our view on more complex
structures, i. e. towards (multi-layer) bipartite graph representations, as discussed below in
more detail. In particular, our proposed approach builds on our multi-objective-optimization-
based method for anomaly detection in multi-layer networks [MA20; MA21] which we
integrate for obtaining candidates for anomalous nodes – being complemented by additional
methods for anomaly assessment from multiple (multi-layer) perspectives. Regarding
Bipartite Networks, [Su05a; Su05b] investigate neighborhood formation and anomaly
detection in bipartite networks, for (1) identifying similar nodes (relevance) and finding
anomalous ones based on their neighborhood structure. They evaluate their algorithm on
synthetic data. Furthermore, [Li21] discuss anomaly detection on bipartite graphs in a
supervised setting, exploring the bipartite structure of the networks.

We have proposed a method in [MA21] which employs many-objective optimization based
on minimizing a given centrality measure. As already discussed, we directly integrate this
method in our proposed approach. Next, [MB18] discuss anomaly detection in multiplex
networks via a cross-layer metric indicating anomalous nodes. Furthermore, [BTA17] focus
on anomaly detection in social networks, while [BS20] presents a method for anomaly
detection on attributed multiplex networks.

Altogether, in contrast to those approaches discussed above, we provide an unsupervised
exploratory anomaly detection approach, embedded into a human-centered process, focusing
on interpretable representations and visualizations. Furthermore, we focus on the novel
special case of bipartitemulti-layer networks, and present a novel combined approach tackling
this. In a case study using a real-world dataset, we also discuss respective implications.

3 Method

Below, we first provide a bird’s eye view on our proposed approach, before we discuss two
of its core components, i. e. network centrality, and the applied method for many-objective
optimization. Due to the limited space, we summarize correlation and 𝑘-means clustering
below and refer to e. g. [Ma67; Sa13] for details.

3.1 Analytical Framework – A Bird’s Eye View

Below, we outline the individual steps of proposed approach:

1. We start with the bipartite multi-layer network; here, each layer is a bipartite network.
We preprocess the network, constructing according bipartite projections for the
individual layers of the given multi-layer network. That is, for 𝐺 = (𝑈,𝑉, 𝐸) an
edge is created concerning a pair of nodes in 𝑈 (𝑉 , respectively), whenever their
intersection 𝐼 of connected nodes in 𝑉 (𝑈, respectively), is not empty, with |𝐼 | as the
new weight of that edge.



2. Given the preprocessed network, we perform many-objective optimization using
minimization on the eigenvector centrality values applying the method presented
in [MA21]. This means, that we aim to identify the Pareto-Front of the least important
nodes in the network w.r.t. the nodes’ eigenvector centrality.

3. Using the obtained centrality values, we perform correlation analysis on themulti-layer
network for each node: We create a vector for each node consisting of the centrality
values of each layer. That means, for 𝑛 layers, we create a tuple (𝑐1, . . . , 𝑐𝑛) where
𝑐𝑖 denotes the centrality value of layer 𝑖. Using these tuples, we create a correlation
matrix 𝑀 between all nodes, denoting the (Pearson) correlation between every pair
of nodes, such that an entry 𝑚𝑖 𝑗 in the matrix 𝑀 indicates the correlation between
node 𝑖 and node 𝑗 . Using a heatmap, this can then be visually inspected.

4. In addition, we perform 𝑘-means clustering on a set of nodes, e. g. the Pareto
Front given the correlation matrix 𝑀. Here 𝑘 is selectable by the user, e. g. for
𝑘 = 3 we aim to cluster according to positively correlated, negatively correlated
(i. e. very different) and non-correlated nodes, even though clustering of nodes more
emphasizing according to positive and negative correlated. From each cluster, we
calculate the average of node centrality. The cluster with the lowest average of node
centrality can then be used as an indicator regarding the most anomalous node(s).
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Fig. 2: Overview on the procedural steps of the proposed approach.

With this approach, we can identify anomaly candidates from those given multiple perspec-
tives. First, the obtained Pareto-Front can be applied in order to find a group of nodes as
candidates for anomalies – i. e. having the least importance with respect to their centrality,
as we have discussed in [MA20; MA21]. Second, the correlation analysis together with its
heatmap representation provides a summarized view on the multi-layer centralities which
is further condensed using the clustering approach, as the most abstracted representation.
In this way, these perspectives are both complementary as well as providing different
levels of abstraction. In a human-centered-approach – similar to the Information Seeking
Mantra by Shneiderman [Sh96] – the respective operations overview, browse and zoom and
details-on-demand are then enabled by our presented perspectives.



3.2 Centrality-Based Many-Objective Optimization Approach

In network science, there are special methods for finding the most influential nodes [BL01]
in the network using the notion of the so-called network centrality, which considers,
for example, degree or the connection (structure) to other nodes. In particular, there
is Eigenvector centrality, which considers the number of links from other nodes, their
importance, and to how many these nodes themselves point tofeat [Pa99]. For our proposed
approach, we apply eigenvector centrality, since this precisely corresponds to our intuition
for estimating the notion of connections to important nodes and/or parts of the network,
which is relevant for anomaly detection, as discussed in [MA20; MA21].

In particular, in our proposed approach, we integrate a method which we presented in [MA20;
MA21]. In summary, it estimates the centrality of all nodes on all layers of multi-layer
network, followed by applying many-objective optimization with full enumeration of all
layers based on a minimation problem to find the Pareto Front. That is, we utilize the
Pareto Front as a non-dominated solution generated by many-objective optimization for
minimization as a basis to extract a set of anomaly candidates, i. e. a set of suspected
anomalous nodes from the network. For a detailed discussion, we refer to [MA20; MA21].

4 Case Study: Results and Discussion

Below, we present the results of a case study exemplifying the presented approach in the
context of a real-world socio-spatial dataset capturing human interactions [At19b]. Before
that, we briefly summarize the applied dataset and its characteristics.

4.1 Applied Dataset: Interactions, Preferences and Perceptions

For demonstrating our approach, we provide a case study using a real-world dataset of
bipartite network data. For details on the dataset, we refer to [At19b]. Essentially, the
dataset is given by a set of bipartite networks which form a multiplex networks, capturing
interactions as well as preferences and perception of students attending a student career day;
here face-to-face proximity contacts between participants and companies were estimated
between stationary sensors (denoting companies) and a wearable sensors worn by the
participants with different signal strength thresholds, resulting in three different interaction
networks. Furthermore, participants indicated preferences with respect to companies, as
well as their perception which company they had really visited.

In total, for 59 participants information modeled in those bipartite networks could be
obtained, as well as for 26 company stands. The applied dataset [At19b] contains the
following networks, as described in [At19b]:



1. Socio-spatial interaction networks, taking the proximity contacts and a threshold on
the received signal strength indicator (RSSI), selecting the contacts (as edges) that are
stronger than the applied threshold. As individual thresholds, values of RSSI={-90,
-93, -95} dBm, relating to stronger to weaker contacts were applied, resulting in the
according networks. For a detailed discussion we refer to [At19b].

2. A preference network [At19b]: An edge is created between participant 𝑝 and company
𝑐 whenever 𝑝 selected 𝑐 as a preference.

3. A perception network [At19b]: Here, an edge is created between participant 𝑝 and
company 𝑐 whenever 𝑝 perceived having visited 𝑐.

4.2 Case Study: Anomaly Detection in Socio-Spatial Interactions

Tab. 1: Pareto Front Perspective – Many Objective Centrality Optimization on the Student Multiplex
Network (nodes are marked in green color). F1 is a node centrality in layer1, F2 is a node centrality in
layer2, and so forth.

No F1 F2 F3 F4 F5 Label .level
1 0.058435 0.082584 0.336664 0.203168 0.073908 NS1 1
2 0.020032 0.008565 0.071518 0.23928 0.092498 NS11 1
3 0.00834 0.043568 0.021147 0.005369 0.204478 NS14 1
4 0.088539 0.022391 0.043383 0.227554 0.105786 NS16 1
5 0.033832 0.045463 0.044365 0.553628 0.042536 NS18 1
6 0.422805 0.008565 0.029438 0.175686 0.346587 NS19 1
7 0.108552 0.819903 0.164407 0.106101 0.050329 NS22 1
8 0.747846 0.053819 0.018351 0.635604 0.163782 NS25 1
9 0.220744 0.497118 0.153658 0.030283 0.159244 NS27 1
10 0.965811 0.333172 0.428143 0.50591 0.042415 NS28 1
11 0.179811 0.336341 0.334383 0.18536 0.111162 NS33 1
12 NA 0.711633 0.187118 0.040174 0.347735 NS57 1
13 NA 0.239367 0.991194 0.396993 0.315568 NS58 1
14 NA 0.552809 0.337983 0.542295 0.131849 NS59 1
15 NA 0.079951 0.437543 0.461424 0.175005 NS6 1
16 NA 0.017427 0.241566 0.333288 0.442596 NS7 1
17 NA 0.508283 0.015032 0.454032 0.074468 NS8 1
18 NA NA 0.360343 0.720698 0.221801 NS9 1
19 0.239912 0.276464 0.23333 0.299679 0.393432 NS10 2
20 0.152972 0.054808 0.211162 0.409675 0.18891 NS24 2
21 0.286974 0.151257 0.093821 0.947345 0.152569 NS26 2

In the following, we apply our approach and its proposed methods for identifying a set of
anomalous nodes on the applied bipartite multi-layer network. Since the bipartite network
consists of nodes in the participant as well as the company group, we first apply respective
bipartite projections of the respective bipartite networks to those groups, respectively their
nodes. The applied bipartite network data consists of five single networks, i. e. on the
applied 90, 93, and 95 RSSI thresholds, as well as the perception and preference networks
(corresponding to the layers 𝐹1, . . . 𝐹5 in the tables below). After performing the projections,
we merge the single networks into a multi-layer network. With this, we thus overall obtain
two multi-layer networks, focusing on the student or the company view. With this, each multi
layer network consist of the described 5 layers. In a next step, we estimate the centrality for
all nodes in all layers and applying many-objective optimization through minimization. Via



many-objective optimization (as our first perspective), for the student multi-layer network
(59 nodes), we found 18 nodes in the Pareto Front as shown in Table 1; from the multi-layer
company network (26 nodes), we found 6 nodes in the Pareto Front, as shown in Table 2.
Tab. 2: Pareto Front Perspective – Many Objective Centrality Optimization on the Company Multiplex
Network (nodes are marked in green color).

No F1 F2 F3 F4 F5 Label .level
1 0.4482975 0.1905443 0.4089364 0.3641929 0.5381588 NC1 1
2 0.6246017 0.4006532 0.2552298 0.3146327 0.5828198 NC14 1
3 0.159209 0.2224548 0.3331644 0.0195039 0.0072467 NC17 1
4 0.0625617 0.1134566 0.2490524 0.3322918 0.6890849 NC22 1
5 0.1044334 0.1031209 0.080126 0.3188913 0.6595348 NC24 1
6 0.0728712 0.0871649 0.0726725 0.4365817 0.642153 NC26 1
7 0.4553215 0.4814703 0.3724962 0.293394 0.5510949 NC12 2
8 0.6744349 0.4325141 0.382043 0.2237861 0.5357821 NC18 2
9 0.1151643 0.1267584 0.1394879 0.5209188 0.6889977 NC3 2
10 0.1979351 0.2372188 0.4171418 0.2635447 0.5853475 NC5 2
11 0.1653118 0.2630649 0.1768858 0.5340186 0.654309 NC8 2
12 0.6250001 0.679367 1 0.5199702 0.5782924 NC13 3
13 0.668332 0.5616736 0.5084357 0.4447854 0.7714854 NC19 3
14 0.7034202 1 0.8774036 0.5149992 0.5609705 NC2 3
15 0.4214642 0.4096859 0.4808022 0.5928846 0.7992488 NC21 3
16 0.2192858 0.4292074 0.7068541 0.854632 1 NC25 3
17 0.5923108 0.524016 0.4940392 1 0.6630276 N4 3
18 0.371011 0.6057899 0.9353183 0.2984418 0.7740636 NC10 3
19 0.2124341 0.4775924 0.7428361 0.4999265 0.6660691 NC23 3
20 0.4065302 0.3365142 0.216268 0.7253887 0.7394951 NC6 3
21 0.5491494 0.5007099 0.5251708 0.6648729 0.615604 NC9 3
22 0.6537326 0.7977356 0.6635758 0.8285424 0.9111193 NC11 4
23 0.5164128 0.7350974 0.8935396 0.5111472 0.6999271 NC16 4
24 0.5454632 0.6279124 0.7710405 0.6988572 0.7537753 NC20 4
25 1 0.9845064 0.9193236 0.8309337 0.8904896 NC15 5
26 0.6932629 0.9393032 0.8035952 0.8669217 0.9324355 NC7 5

Using the set of nodes in the Pareto Front as a candidate basis of anomalous nodes, we
can apply correlation analysis as a complementing perspective (visualized as a heatmap) in
order to understand the correlation and the proximity of each node compared to all other
nodes in the Pareto Front better in the context of node centrality. For this, we compute the
Pearson correlation values as described above. Figures 3-4 show the resulting heatmaps.

As shown in Figure 3, for the correlation analysis in the student multi-layer network, we
observe that the node of student 1 (NS1) is highly correlated regarding centrality (i. e. with
very similar role of centrality) compared to the nodes NS58, NS6 and NS59 that are depicted
in dark blue color; on the contrary, node NS1 is conflicting (i. e. with a different role of
centrality) compared to nodes NS19, NS27, NS25, and NS57. Also, it is visible that NS1 has
a considerable “conflict” with node NS14 (depicted in darker red color). Likewise, for the
correlation analysis in the company multi-layer network, we can identify some distinctive
results, regarding the set of nodes in the Pareto Front. In Figure 4, for example, we observe
that the node of company 1 (NC1) is highly correlated with nodes NC14, NC22, NC24
and NC26; however, here we also observe that node NC1 is conflicting with NC17. For
grouping the nodes according to their correlation, we utilize 𝑘-means clustering for further
assessing interesting nodes (in the Pareto Front and/or as indicated by correlation analysis).



Fig. 3: Correlation Matrix / Heatmap Perspective:
Multi-Layer Network of Student Relations.

Fig. 4: Correlation Matrix / Heatmap Perspective:
Multi-Layer Network of Company Relations.

Then, from the formed clusters, we continue by calculating the average of the centrality for
each cluster and compare these centrality averages to all other clusters in order to estimate
the lowest average centrality. This lowest average centrality of a cluster can then be applied
in categorizing clusters of anomalous nodes in the network.

In our case, considering the nodes in the respective Pareto Fronts, for the student
multi-layer network we obtained 18 nodes, consisting of 3 clusters, for which 𝐶1 =

{NS1,NS6,NS7,NS9,NS11,NS16,NS18𝑎𝑛𝑑NS58}, 𝐶2 = {NS14,NS19,NS25,NS26}
and 𝐶3 = {NS8,NS22,NS27,NS33,NS58,NS59}. From those clusters, we ob-
serve that cluster 𝐶3 has the lowest average centrality, and therefore the nodes
NS8,NS22,NS27,NS33,NS58,NS59 can be categorized as anomalous node candidates
for the student network. Likewise, from the company multi-layer network, we obtain 3
clusters, 𝐶1 = {NC17}, 𝐶2 = NC14}, and 𝐶3 = {NC1,NC22,NC24,NC26}, where the
lowest average centrality is found at cluster 𝐶1.

5 Conclusions

In this paper, we proposed an approach for anomaly detection on bipartite multi-layer
networks. We exemplified the approach in the context of socio-spatial interactions using a
real-world dataset of human interactions. Specifically, our proposed approach integrates
many-objective optimization, correlation analysis, as well as clustering for obtaining
different yet complementing perspectives for anomaly detection in a human-centered way.
This is facilitated, in particular, by the transparent and interpretable representations and
visualizations, as we have also exemplified in our case study.



Fig. 5: Cluster Perspective: Pareto Front of the
Student Multi-Layer Network. Dim1 meaning of
Dimension of positively correlated and Dim2 is
dimension of negatively correlated

Fig. 6: Cluster Perspective: Pareto Front of the
Company Multi-Layer Network. Dim1 meaning
of Dimension of positively correlated and Dim2
is dimension of negatively correlated

For future work, we intend to extend the analysis by incorporating further methods and
metrics investigating further real-world phenomena about potential anomalies [At19a]. In
addition, we aim to extend the analysis by incorporating attributed network information into
the detection algorithms, e. g. [AGZ21; In19].
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