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Abstract:

A common task in local pattern mining on attributed graphs revolves around detecting subgraphs
with predefined similarity measures on the attributes of the nodes. In this work we focus on mining
cohesive subgraphs with attribute values that stand out when compared to the rest of the graph. We
tackle a more specific problem: given a vertex-attributed graph, we aim to detect a cohesive set of
connected vertices, such that for a maximal set of the attributes, at least one of the vertices in the
subgraph shows an abnormal value. Such patterns are very relevant in the biological field, where
anomaly detection is used to identify parts of a corrupt gene network. We develop a pattern syntax
and an interestingness score to mine such subgraphs, and implement it using a branch-and-bound
algorithm. Furthermore, we design an experimental setup to qualitatively assess the results, discuss
our findings, limitations and future improvements.
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1 Introduction

The graph mining field saw a rise in interest in recent years, benefiting from the surge in the
amount of network data available from the ever-growing data revolution, from social media
to biological protein-protein networks.

For example, in the field of cancer biology, a cancer driver gene is a gene whose mutations
cause or facilitate cellular cancer initiation and progression [TVS09], and thus exploratory
pathway and network analysis is becoming an integral tool for cancer driver gene discov-
ery[Hol18], and associating infrequently mutated genes as cancer genes based on their
interaction with recurrently mutated genes [Cr15; Re20].

As more fields are employing graph data, the use of rich graphs for exploratory data mining
became more popular. While classical graphs solely rely on node topology, rich graphs add
another layer of data in the form of node and/or edge characteristics|[KL15]. Thus, data
mining on node-attributed graphs (referred to as attributed graphs throughout the rest of
the paper) combines additional information and offers more insights for enhanced graph
mining tasks[Bo15].

One of those tasks is graph clustering, or community detection, where the goal is to detect a
subgraph (typically a densely connected subset of nodes and the edges between them) of an
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attributed graph [AGZ21; Bel9], where the nodes have similar (according to some metric)
attribute values [Ch20].

Similarly, subgraph anomaly detection on attributed graphs aims to discover outlier
substructures within such graphs that are rare with respect to their node attribute values,
deviating significantly from the majority of the other nodes in the graph[ATK15].

Both approaches fall under community detection, while the former seeks subgraphs sharing
similarities with their attribute values, and the latter finds subgraphs with differing attribute
values with respect to the rest of the graph.

In this paper, we introduce a new intuitive interpretable method for exploratory subgraph
mining in node attributed graphs, that finds easily describable cohesive set of nodes with
attribute values that stand out compared to the rest of graph. We propose and employ a
principled interestingness measure to rank the discovered patterns, by maximizing the
amount of information contained in a pattern while reducing its size. Recent work [Be20]
on this topic focused on discovering interesting cohesive patterns where for a subset of the
attributes, every node in the subgraph has exceptional attribute value compared to the rest
of the graph. Our work generalizes this work by defining a pattern syntax such that for a
subset of the attributes at least one node in the subgraph has exceptional value. Our novel
method aligns with the application of pathway analysis for gene discovery, where the aim is
to find oncogenic pathways (subgraphs) of interacting genes (nodes) and encoded patient
mutation data (attributes), such that the size of the pathway is minimal while maximizing
the patient mutation on the genes.

This approach overcomes many limitations including the need to define exceptions for the
detected patterns, where some nodes in the subgraph do not match the described pattern.
We detail the formulation in Sect. 2. An implementation of the search and rank approach is
detailed in Sect. 3. In Sect. 4 we design an experimental study using real world datasets
from attributed gene interaction networks to validate our method qualitatively. Finally, we
conclude our paper by discussing the results and limitations of our work while setting up
future improvement in Sect. 5.

Our main contributions can be summarized as follows:

. We introduce a novel interpretable pattern syntax for attributed subgraph mining

. We implement an interestingness measure to rank the described patterns using a
heuristic branch-and-bound search algorithm

. We design an experimental study to validate our method qualitatively on a real world
dataset



2 Pattern Syntax

In this section, we formalize the problem statement and the proposed pattern syntax, and
define the interestingness measure used to rank the patterns.

2.1 Preliminaries

LetG = (V,E, A) be a vertex-attributed undirected graph. V is a set of n vertices. E C VXV,
a set of m edges, With A we denote a set of p numerical attributes. They are formalized as
functions d(v) € Dom,, denoting the value of attribute @ € A for node v € V. Here, Dom,
denotes the set of possible values to which the attribute values d(v) belong. We use hats
over A and a to emphasize that we are talking about their empirically observed values here.
Whenever we consider them to be random variables, the hats will be omitted.

We define a cohesive subgraph with anomalous attributes (CSAA) as a tuple (U, S) for
which the following holds:

. U C V is a set of vertices in the graph.
. Sc{(a,ky)|acA, k, €Dom,} is a set of so-called characteristics.

° Y(a,kg) €S, JuelU: a(u) >k,

We refer to the set of vertices U as the CSAA cover of the CSAA, while S represents
the (exceptional) characteristics of those vertices, restricting the attribute domains of the
vertices within the cover.

We also define N;(v) as the neighborhood of range d of a vertex v, as the set of vertices
whose shortest path to v is at most d:

Ng(v) ={u € V| dist(v,u) < d}.

While the CSAA pattern syntax has to the best of our knowledge not been proposed before,
it is relevant in concrete applications. E.g., in the biological pathway network analysis
problem mentioned in the introduction, where genes represent the nodes, and mutation data
the characteristics, a CSAA would define a pathway (subgraph) of genes (nodes) such that
at for a maximal subset of mutation characteristics (attributes), there exists at least one gene
in the pathway that fits those mutation criteria.

Problem Statement Following the notations defined above, given a vertex-attributed
graph G, our goal is to find a tuple (U, S), such that for every attribute in S, at least one
vertex u in U, should exceed a specified threshold k.



2.2 Interestingness Measure

Now that we have described the pattern syntax, the next step is to define the ranking
mechanism used to quantify the interestingness of the patterns. This is important, as
generally speaking there will be many CSAA’s in any given attributed network. Thus, in this
section we cover our interestingness measure and discuss its formulation in detail, relying
on the FORSIED framework, that leverages the background knowledge of the user about
the data and the complexity of the pattern to quantify its interestingness using information
theory. The framework aims provide as much knowledge to the user about the data, with
as little cost as possible, while relying on the user’s prior belief. More specifically, our
subjective interestingness measure Sl is defined as the ratio of the information content IC
(background knowledge) over the description length DL (complexity) of the pattern. Such
formulation intuitively leads to a pattern that maximizes the information content while
remaining easily describable.

Our approach takes into account both the topology of the graph and its embedded data
which makes it more versatile than other anomaly detection techniques.

IC(U, S)

SI(U, S) = L)

(D

2.2.1 Information Content

Subjective measures account for both the data and its user, thus relying on the background
knowledge that the user has about the data. Such prior beliefs are modeled as equality
constraints assuming that the user knows general statistics about the data.

In this context, we define information content IC of the pattern as the self-information or
surprisal, a measure of unexpectedness of the pattern. Meaning, the least expected patterns
are the most informative, and have the highest information content.

We also consider only attributed graphs with non-negative integer values for the attributes.
In other words (a : V — N, Va € A). In our experiments we will even consider the situation
where the attribute value domains are binary (1 or 0).

We consider also that the user knows a priori general statistics about the graph, more
specifically the averages over the attributes and vertices. This leads to prior beliefs formalized
as equality constraints on the attribute values A on all the vertices, more specifically, one
constraint modeled after the total sum of the attributes for each vertex, and the other after
the total sum of all the vertices for each attribute in the graph, this is denoted below:
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Additionally, we model the prior beliefs of the user as a Maximum Entropy distribution
(MaxEnt) subject to those constraints, as such distribution maximizes the entropy (the
uncertainty about the data) while minimizing the bias (using only prior information as
bias), subject to the constraints in Eq. (2) and Eq. (3), and normalization. We refer to the
MaxEnt distribution as background distribution, and we formalize the information content
of a pattern IC(U, S) as the negative logarithm of the probability that the pattern is present
under the background distribution.

IC(U, S) = —1og(Pr(U, S)). 4)

And following our problem statement we can define Pr(U, S) as

Pr(U,S) =Pr(V(a, ky) € S,Ju € U : a(u) > k,). 5)

Furthermore, as demonstrated in [Dell], the maximum entropy problem is a convex
optimization problem, of which the solution is a product of independent Geometric
distributions, one for each vertex attribute-value a(v), of the form

Pr(a(v) = 2) = pav(l = pay)?, withz € Nand pgy = 1 — eMa*t)

where p, is the success probability, and 1, and 4, the Lagrange multipliers corresponding
to the two constraint types.

Thus, Eq. (5) can be written as:

Pr(V(a, ko) € S,3u € U : a(u) > k) = ﬂ Pr(Fu € U : a(u) > ka).
(a,ky)€S



The factors in this product can be written as follows:
Pr(AueU:a(u) 2ky)=1-Pr(Vu e U : a(u) < k)
=1- ]—[ Pr(a(u) < kg)

ueU

=1- 1_[(1 —Pr(a(u) > k4))
uclU

=1- l—[(l -(1 _pau)ku)'
uelU

Furthermore,

Pr(V(a,kq) € $,3u € U : a(u) 2 ko) = || (=[]0 == pa))).

(a,kq)€S uel

Putting things together, Eq. (4) would lead to the following Information Content (IC):

ICW.8)= ), (<log(l -] [(1=(1=pau) ).

(a,kq)eS uelU

2.2.2 Description Length

The description length DL represents the encoding length of the pattern. Ideally, we aim to
find patterns that are the most informative with minimal description cost. Our approach,
provides a more intuitive interpretation of the descriptional complexity of a pattern, such
that, a higher complexity would negatively impact the total interestingness of a pattern, as
the description length DL functions as a regularizer.

As mentioned earlier in Sect. 2.1, we describe the vertex set U in the pattern as the
intersection of a set of neighborhoods Ng4(v), with v € V. More formally, let us define the
set of all neighborhoods N = {N4(v) |v e VAd € NAd < D} (with D the maximum
radius d considered), and let N(U) = {Ng(v) € N | U C N4(v)} be the subset of
neighborhoods that contain U. The length of a description of the set U as the intersection of
all neighborhoods in a subset X € N (U)

DL(X,U) = log(IN|) + |X] - log(IN1).

The first term accounts for encoding of the number of neighborhoods log(|N|), and the
second term for the description of which neighborhoods are involved (| X|log(|N|)).



3 Interesting Outlier Subgraph Detection

Now that we have defined a CSAA pattern, we will introduce our method in this section,
and subsequently our algorithm3 that searches for patterns and ranks them according to the
subjective interesting score defined in Sect. 2.

The main idea is that the ranking is based on the subjective interestingness score SI
moderated by the background information and the size of the intersection. The bigger the
size of the pattern, the higher the description length DL the lower the total SI. On the other
hand, the higher the information content IC, the higher the total SI. So our algorithm tries to
optimize over those two variables, to maximize SI. Again, our aim is to find patterns such
that for a maximal subset of the attributes, there exists at least one vertex in the pattern that
contains anomalous value compared to the rest of the graph. Applying a brute force search
strategy is inefficient, thus we rely on a beam search approach for the breadth-first-search
branch-and-bound algorithm.

3.1 Beam search

Traversing a search tree, branch-and-bound methods keep track of the best solution found so
far and its associated value, and then it computes an upper bound on the highest objective
value that can possibly be achieved when exploring new parts of the search space. If such
upper bound is worse than the current best solution then this portion of the search space
cannot contain the optimal solution, and is pruned. Beam search [Bi92] operates similarly, in
each level of the search tree, beam search expands towards the k£ most promising solutions,
and discards the rest, where the k is an integer called the beam width. By varying k we
can control the search strategy, from a greedy search for k = 1, mirroring the classic
branch-and-bound approach, to a larger limit to perform a complete search approach, which
in most cases is intractable. One of the main challenge is to define a suitable upper bound
for the objective function to effectively prune irrelevant branches.

3.2 Interesting Outlier Subgraph Miner: MIOS

Our aim is to explore CSAA patterns in attributed graphs and rank them efficiently. To
do so, we employ a beam search branch-and-bound algorithm. Given an attributed graph
G, maximum radius d for the ego graph of a given vertex, and k representing the width
of the beam search, the initial step is to enumerate all the neighborhoods N4(v) (i.e.
ego graph of vertex v of radius d) for every vertex v in the graph G, using the function
G.Al1lNeighborhoods(d). This would constitute our initial search space candidate-patterns.
We initialize BestScore= 0 to keep track of the SI values of the most promising k solutions

3 Our algorithm code is available on the following github link: https://github.com/aida-ugent/mios



so far. Then for every enumerated neighborhood N,4(v), we generate a pattern object P.
The function G.getNeighborhoods generates candidate neighborhoods X; that intersects
with Py to produce a new pattern P with the interestingness score P.si, and an upper bound
on the interestingness score that we consider as an optimistic bound P.upperbound = SI*.

The upper bound on the interestingness score is computed such that the intersection of the set
of neighborhoods P.X of this pattern P with an additional neighborhood would produce a
pattern P* with its cover P*.U containing a single vertex with maximal information content.
Thus |P*.X| = |P.X| + 1, and P*.DL is the same in this case for all the patterns formed by
the different vertices in P.U. Consequently, the upper bound on P*.si would depend solely
on the vertex with the maximal IC P*.ic. Thus the upper bound on SI would be:

STt = maXVVEU{Ic({V}’S*)}
(1X]+2) - log(IN1)

This pattern is the best we can hope for as its description length is minimal, and infomation
content is maximal for all the childrens node formed with the additional intersection.
New candidate patterns are generated for next iteration and the algorithm is repeated
until the candidates list is empty. To summarize, the algorithm uses the neighborhoods
as search space, and iteratively adds more neighborhoods to the intersection forming new
patterns, thus reducing the number of vertices in the newly formed patterns, to maximize
the interestingness of the patterns resulting from the intersection of these neighborhoods.
The pseudocode for our algorithm is provided in Algorithm 1.

4 Experimental Results

In this section we define our experimental setup, by describing our dataset, presenting our
qualitative findings of the application of our method on oncological pathway discovery and
an assessment of the quality of the patterns.

4.1 Dataset

To test our framework, we utilized a dataset consisting of gene interaction network [Gi22],
and patient mutation sample data for each gene in the network. The network consists of 185
genes, and 463 patient samples. We additionally use the PAMS50 [Pa09] dataset for validation
of the results. PAMS50 is a 50-gene signature that classifies breast cancer into five molecular
intrinsic subtypes: Luminal A, Luminal B, human epidermal growth factor receptor 2
(HER2)-enriched, Basal-like and Normal-like. Each of the five molecular subtypes vary by
their biological properties and prognoses.

The aim is to find a pathway (subgraph) of genes (vertices) such that for a maximal subset of
samples (attributes), there exist at least one gene in the pathway that is mutated (anomalous).



Algorithm 1: MIOS(G, d, k)

Input:
G: Vertex-Attributed Graph Object,
d: Maximum Radius of Neighborhoods,
k: Width of the Beam Search
QOutput:
top-k-patterns: Top-k anomalous pattern objects
BestScore = 0
candidate-patterns «<— G.AllNeighborhoods(d)
while candidate-patterns # 0 do
next-candidate-patterns= 0
for Py in candidate-patterns do
N « G.getNeighborhoods(Py.X, Py.U)
for X; in N do
if Pp.X U X; # Py.X and Py.U N X; # 0 then
P « Pattern(Po.X U X;, Po.U N X;)
if P.upperbound > BestScore then
BestScore « P.si
next-candidate-patterns « addPattern(P)
top-k-patterns « addPattern(P)
candidate-patterns «— FilterPatterns(k, next-candidate-patterns)
top-k-patterns « FilterPatterns(k, top-k-patterns)
return top-k-patterns

To assess the abnormality of the gene, we combine data from 463 patients, representing
mutation, copy number variation and gene expression data, such that the attribute on the
nodes are binary: 1 corresponding to an abnormal gene, and 0 to normal gene.The dataset is
illustrated in Fig. 1.

4.2 Results and discussion

Using MIOS we were able to detect the most relevant genes in the top-50 patterns. We also
perform post-processing of the results to remove redundant patterns that are produced by
different descriptions (intersection of different genes ego networks). In Fig. 2 we visualize
the top ranking pattern, a subgraph of two vertices {TP53, FOXA1} formed by the intersection
of two neighborhoods N(MYB) {, the ego graph of radius 1 around vertex MYB and N(MDM2)
the ego graph of radius 1 centered around node MDM2. TP53 is commonly associated with
many forms of cancer. While interpreting the pattern quality is challenging and out of the
scope of this work, we can nonetheless validate the results by assessing the classification
of the resulted patterns and their association with a specific molecular subtype: (LumA,
LumB, HER2, Basal, Normal). The goal is to evaluate the detected patterns with gene set
enrichment analysis using Fisher Exact Test.

Enrichment analysis of biological pathways is a statistical method that is used to identify
pathways that are enriched in a gene list more than would be expected by chance. It is a
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Fig. 1: Data sketch for the experimental setup. Combining gene interaction network with the attributes
represented by k patients sample binary data (mutation, copy number variation and gene expression),
such that an attribute value of 1 corresponds to an abnormal gene, and O otherwise.

commonly used method to identify classes of genes that are over-represented in a large set
of genes, and may have an association with disease phenotypes. In Tab. 1 we list an example
of a contingency table of a pattern for a specific subtype. Subtype represents the counts of
samples not associated with the subtype. Characteristics represents the counts of samples
not contained in the characteristics of the patterns.

MYB

Fig. 2: Top pattern ( U={TP53, FOXAl}, X={N(MYB),N(MDM2)}) detected using MIOS. TP53 is a
common oncological driver gene.

Fisher exact-test is used to determine the probabilities of observing the various joint values
within a contingency table under the null hypothesis assumption that the marginal values
are fixed and that there exist no association between the categorical values. We take the a
priori stance that the categories are independent. Consequently, we calculate the probability
that this contingency table with joint values would occur under the null hypothesis. A small



Tab. 1: Example of a contingency table for a discovered pattern by MIOS for a specific subtype.

Subtype  Subtype

Characteristics 5 20
Characteristics 66 74

probability is interpreted as a discrepancy between the data and the null hypothesis of no
association between variables.

Thus, we can couple the subgroup information to recover certain type of molecular subtype
groups.Performing enrichment analysis (fisher exact test, 2-sided and 1-sided) on the top 50
resulting patterns, resulting in Fig. 3, we found that the majority of the p-values are below
0.05 for the fisher tests for HER2 and Basal (both being overrepresented), and LumA (being
underrepresented),

This implies that the majority of our patterns exhibit statistically significant imbalance for
HER2, Basal and LumA, rendering the classification significant.

5 Conclusion and future work

In this paper we presented MIOS, a novel method for interpretable attributed graph mining
for interesting outlier subgraph detection. The goal is to search and rank cohesive sets of
nodes with an intuitive explainable description, and anomalous attribute values compared to
the rest of the graph. We formulated a pattern syntax and implemented an algorithm to mine
such patterns, we then validated our method with real world applications in pathway mining
with preliminary findings showing promising qualitative results. Furthermore, we performed
additional analysis on the results to assess the ranked patterns using fisher exact tests. The
main limitation of our work is the incompletness of the search algorithm, which would
be tackled in future work by implementing better heuristic approaches, using constraint
satisfaction programming to mitigate the pattern explosion problem. Finally, applications
with additional datasets and frameworks with a focus on pathway mining will be another
main focus for improvement.
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